Skip to content

Latest commit

 

History

History
58 lines (30 loc) · 1.59 KB

Linear Algebra Review.md

File metadata and controls

58 lines (30 loc) · 1.59 KB

Linear Algebra Review

  1. Span

    The span of v and w is the set of all their linear combinations.

    av + bw , a and b vary over all real numbers.

  2. linear dependent

    u = av + bw, for some values of a and b.

  3. basis

    the basis of a vector space is a set of linearly independent vectors that spans the full space.

  4. linear transformation

    lines remain lines; origin stay at the same space.

    grid lines remain parallel and evenly spaced.

    matrix expression: 第一列代表 i 变换后的坐标,第二列表示 j 变换后的坐标,以此类推。左乘对应的矩阵可以得到向量变换后的结果。

    matrix multiplication: 从右向左,分别是 transform 的顺序。不同个线性组合的复合。order matters!

  5. determinant

    the transformed area (2d) / volume (3d) are scaled by the determinant

    negative: flipping the space / 右手定则变左手定则 $$ det(M_1M_2) = det(M_1)det(M_2) $$

  6. rank of A

    number of dimensions in the output

  7. column space of A

    set of all possible outputs Av / span of columns 矩阵的列张成的空间

    因此,更精确的rank的定义是列空间的维数。

    零向量永远都在列空间中,因为线性变换必须保持在原点位置不变且一直在原点。

    满秩的矩阵只有原来的原点会变成零向量,非满秩可能有一条过原点的线/过原点的面。

  8. Null space of A

    变换后落在原点的向量的集合。

  9. Gaussian elimination

  10. row echelon form