-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_retrieval.py
458 lines (389 loc) · 20.8 KB
/
run_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import argparse
import shutil
import time
import torch
import os
import json
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
from torch.utils.data import DataLoader
from utils.basic_utils import set_seed, get_current_timestamp, remove_rows_cols
from utils.logging_utils import setup_logger
from utils.evaluation_utils import evaluate_on_retrieval
from datasets.retrieval_dataset import RetrievalDataset, RetrievalCorpusDataset
from modeling.modeling_bert import BertForVideoRetrieval
from pytorch_transformers import BertTokenizer, BertConfig, AdamW, WarmupLinearSchedule
# structure: main() train() test() 3 functions in each run_inference.py
# all datasets code are in dataset, modeling code are in modeling
def get_predict_file(output_dir, args):
cc = ['retrieval', 'pred']
return os.path.join(output_dir, '{}.json'.format('.'.join(cc)))
def get_evaluate_file(predict_file):
assert predict_file.endswith('.json')
fpath = os.path.splitext(predict_file)[0]
return fpath + '.eval.json'
def sim_matrix(a, b, eps=1e-8):
"""
added eps for numerical stability
"""
a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None]
a_norm = a / torch.max(a_n, eps * torch.ones_like(a_n))
b_norm = b / torch.max(b_n, eps * torch.ones_like(b_n))
sim_mt = torch.mm(a_norm, b_norm.transpose(0, 1))
return sim_mt
def norm_softmax_loss(args, x):
"Assumes input x is similarity matrix of N x M \in [-1, 1], computed using the cosine similarity between normalised vectors"
i_logsm = F.log_softmax(x / args.temperature, dim=1)
j_logsm = F.log_softmax(x.t() / args.temperature, dim=1)
# sum over positives
idiag = torch.diag(i_logsm)
loss_i = idiag.sum() / len(idiag)
jdiag = torch.diag(j_logsm)
loss_j = jdiag.sum() / len(jdiag)
return - loss_i - loss_j
def save_checkpoint(model, tokenizer, args, epoch, iteration, num_trial=10):
if args.ablation is None:
ablation = 'full'
else:
ablation = 'wo-' + '-'.join(args.ablation)
checkpoint_dir = os.path.join(args.output_dir, 'ret_checkpoint-{}-{}-{}-{}'.format(
ablation, epoch, iteration, get_current_timestamp()))
if os.path.exists(checkpoint_dir):
shutil.rmtree(checkpoint_dir)
os.mkdir(checkpoint_dir)
model_to_save = model.module if hasattr(model, 'module') else model
for i in range(num_trial):
try:
model_to_save.save_pretrained(checkpoint_dir)
torch.save(args, os.path.join(checkpoint_dir, 'training_args.bin'))
tokenizer.save_pretrained(checkpoint_dir)
logger.info("Save checkpoint to {}".format(checkpoint_dir))
break
except:
pass
else:
logger.info("Failed to save checkpoint after {} trails.".format(num_trial))
return checkpoint_dir
def make_data_sampler(dataset, shuffle):
if shuffle:
sampler = torch.utils.data.sampler.RandomSampler(dataset)
else:
sampler = torch.utils.data.sampler.SequentialSampler(dataset)
return sampler
def retrieval_dataloader(args, tokenizer, split, corpus=False):
if corpus:
dataset = RetrievalCorpusDataset(args, split)
else:
dataset = RetrievalDataset(args, tokenizer, split)
if split == 'train':
shuffle = True
samples_per_gpu = args.per_gpu_train_batch_size
samples_per_batch = samples_per_gpu * args.num_gpus
iters_per_batch = len(dataset) // samples_per_batch
num_iters = iters_per_batch * args.num_train_epochs
logger.info("Train with {} samples per GPU.".format(samples_per_gpu))
logger.info("Total batch size {}".format(samples_per_batch))
logger.info("Total training steps {}".format(num_iters))
else:
shuffle = False
samples_per_gpu = args.per_gpu_eval_batch_size
samples_per_batch = samples_per_gpu * args.num_gpus
sampler = make_data_sampler(dataset, shuffle)
data_loader = DataLoader(
dataset, num_workers=args.num_workers, sampler=sampler,
batch_size=samples_per_batch,
pin_memory=False,
)
return data_loader
def pos_neg_transform(inputs):
for key, value in inputs.items():
temp_value = []
for d0 in range(value.shape[0]):
for d1 in range(value[d0, ...].shape[0]):
temp_value.append(value[d0, d1, ...])
inputs[key] = torch.stack(temp_value, dim=0)
return inputs
def ablation_filter(args, inputs):
ablation = args.ablation
if ablation is None:
return inputs
if inputs['input_ids'] is not None:
curr_pointer = inputs['input_ids'].shape[1]
else:
curr_pointer = 0
if 'obj' in ablation:
inputs['attention_mask'] = remove_rows_cols(inputs['attention_mask'],
curr_pointer, curr_pointer + inputs['obj_feats'].shape[1],
curr_pointer, curr_pointer + inputs['obj_feats'].shape[1])
inputs['obj_feats'] = None
else:
curr_pointer += inputs['obj_feats'].shape[1]
if 'frame' in ablation:
inputs['attention_mask'] = remove_rows_cols(inputs['attention_mask'],
curr_pointer, curr_pointer + inputs['frame_feats'].shape[1],
curr_pointer, curr_pointer + inputs['frame_feats'].shape[1])
inputs['frame_feats'] = None
else:
curr_pointer += inputs['frame_feats'].shape[1]
if 'frame_diff' in ablation:
inputs['attention_mask'] = remove_rows_cols(inputs['attention_mask'],
curr_pointer, curr_pointer + inputs['frame_feats_diff'].shape[1],
curr_pointer, curr_pointer + inputs['frame_feats_diff'].shape[1])
inputs['frame_feats_diff'] = None
else:
curr_pointer += inputs['frame_feats_diff'].shape[1]
if 'act' in ablation:
inputs['attention_mask'] = remove_rows_cols(inputs['attention_mask'],
curr_pointer, curr_pointer + inputs['act_feats'].shape[1],
curr_pointer, curr_pointer + inputs['act_feats'].shape[1])
inputs['act_feats'] = None
else:
curr_pointer += inputs['act_feats'].shape[1]
if 'act_diff' in ablation:
inputs['attention_mask'] = remove_rows_cols(inputs['attention_mask'],
curr_pointer, curr_pointer + inputs['act_feats_diff'].shape[1],
curr_pointer, curr_pointer + inputs['act_feats_diff'].shape[1])
inputs['act_feats_diff'] = None
else:
curr_pointer += inputs['act_feats_diff'].shape[1]
assert inputs['attention_mask'].shape[1] == curr_pointer, "Num Error in ablation filters"
return inputs
def train(args, train_dataloader, val_dataloader, val_corpus_dataloader, model, tokenizer):
t_total = len(train_dataloader) * args.num_train_epochs
# Prepare optimizer and scheduler
no_decay = ['bias', 'LayerNorm.weight']
grouped_parameters = [
{'params': [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
logger.info("***** Running training for Video Retrieval *****")
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size = %d", args.per_gpu_train_batch_size * args.num_gpus)
logger.info(" Total optimization steps = %d", t_total)
global_step, global_loss = 0, 0.0
model.zero_grad()
eval_log = []
best_score = 0
for epoch in range(int(args.num_train_epochs)):
for step, (boundary_ids, batch) in enumerate(train_dataloader):
batch = tuple(t.to(args.device) for t in batch)
model.train()
inputs = {
'input_ids': batch[0], 'attention_mask': batch[1], 'obj_feats': batch[2], 'frame_feats': batch[3],
'frame_feats_diff': batch[4], 'act_feats': batch[5], 'act_feats_diff': batch[6]
}
inputs = ablation_filter(args, inputs)
cap_embedding, bdy_embedding = model(**inputs)
outputs = sim_matrix(cap_embedding, bdy_embedding)
loss = norm_softmax_loss(args, outputs)
loss.backward()
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
global_loss += loss.item()
global_step += 1
optimizer.step()
scheduler.step()
model.zero_grad()
if global_step % args.logging_steps == 0:
logger.info("Epoch: {}, global_step: {}, lr: {:.6f}, loss: {:.4f} ({:.4f}), ".format
(epoch, global_step, optimizer.param_groups[0]["lr"], loss, global_loss / global_step)
)
if (args.save_steps > 0 and global_step % args.save_steps == 0) or global_step == t_total:
checkpoint_dir = save_checkpoint(model, tokenizer, args, epoch, global_step)
# evaluation
if args.evaluate_during_training:
logger.info("Perform evaluation at step: %d" % global_step)
evaluate_file = evaluate(args, val_dataloader, val_corpus_dataloader, model, checkpoint_dir)
with open(evaluate_file, 'r') as f:
res = json.load(f)
best_score = max(best_score, res['mAP'])
res['epoch'] = epoch
res['global_step'] = step
res['best_mAP'] = best_score
eval_log.append(res)
with open(args.output_dir + '/eval_logs.json', 'w') as f:
json.dump(eval_log, f)
return checkpoint_dir
def evaluate(args, test_dataloader, test_corpus_dataloader, model, output_dir):
predict_file = get_predict_file(output_dir, args)
evaluate_file = get_evaluate_file(predict_file)
model.eval()
with torch.no_grad():
time_meter = 0
query_ids = []
ctx_ids = []
cap_embed_list = []
ctx_embed_list = []
for step, (boundary_ids, batch) in tqdm(enumerate(test_dataloader)):
batch = tuple(t.to(args.device) for t in batch)
cap_inputs = {
'input_ids': batch[0], 'attention_mask': batch[1], 'obj_feats': None, 'frame_feats': None,
'frame_feats_diff': None, 'act_feats': None, 'act_feats_diff': None
}
tic = time.time()
# collect caption embeddings
cap_embedding, _ = model(**cap_inputs, do_ctx=False)
time_meter += time.time() - tic
cap_embed_list.append(cap_embedding)
for b_id in boundary_ids:
query_ids.append(b_id)
all_query = torch.cat(cap_embed_list, dim=0)
for step, (boundary_ids, batch) in tqdm(enumerate(test_corpus_dataloader)):
batch = tuple(t.to(args.device) for t in batch)
ctx_inputs = {
'input_ids': None, 'attention_mask': batch[0], 'obj_feats': batch[1], 'frame_feats': batch[2],
'frame_feats_diff': batch[3], 'act_feats': batch[4], 'act_feats_diff': batch[5]
}
ctx_inputs = ablation_filter(args, ctx_inputs)
tic = time.time()
# collect context embeddings
_, ctx_embedding = model(**ctx_inputs, do_cap=False)
time_meter += time.time() - tic
ctx_embed_list.append(ctx_embedding)
for b_id in boundary_ids:
ctx_ids.append(b_id)
all_ctx = torch.cat(ctx_embed_list, dim=0)
sims = sim_matrix(all_query, all_ctx).cpu().numpy()
rank, metric = evaluate_on_retrieval(sims, query_ids, ctx_ids, outfile=[predict_file, evaluate_file])
logger.info("Inference model computing time: {} seconds per batch".format(time_meter / (step + 1)))
logger.info('Evaluation result: {}'.format(str(metric)))
logger.info('Evaluation result saved to {}'.format(evaluate_file))
return evaluate_file
def main():
parser = argparse.ArgumentParser()
# basic param
parser.add_argument("--model_name_or_path", default='bert-base-uncased', type=str, required=False,
help="Path to pre-trained model or model type.")
parser.add_argument("--yaml_file", default='config/retrieval_config.yaml', type=str, required=False,
help="yaml file for training.")
parser.add_argument("--output_dir", default='output/', type=str, required=False,
help="The output directory to save checkpoint and test results.")
parser.add_argument("--eval_model_dir", type=str, default='output/',
help="Model directory for evaluation.")
parser.add_argument("--evaluate_during_training", default=False, action="store_true",
help="Run evaluation during training at each save_steps.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_test", action='store_true', help="Whether to run inference.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run evaluation.")
parser.add_argument("--ablation", default=None, help="Ablation set, e.g.'obj-frame'")
parser.add_argument('--gpu_ids', type=str, default='5 6 7')
parser.add_argument("--per_gpu_train_batch_size", default=108, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=108, type=int,
help="Batch size per GPU/CPU for evaluation.")
# hyper-param for training
parser.add_argument('--logging_steps', type=int, default=50, help="Log every X steps.")
parser.add_argument('--save_steps', type=int, default=20000,
help="Save checkpoint every X steps. Will also perform evaluation.") # 5000
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial lr.") # 3e-5
parser.add_argument("--weight_decay", default=0.05, type=float, help="Weight decay.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm for gradient clip.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup.")
parser.add_argument("--scheduler", default='linear', type=str, help="constant or linear or")
parser.add_argument("--num_workers", default=16, type=int, help="Workers in dataloader.") # Q? n_gpu * 2
parser.add_argument("--num_train_epochs", default=50, type=int,
help="Total number of training epochs to perform.") # 40 enough?
parser.add_argument('--seed', type=int, default=88, help="random seed for initialization.")
parser.add_argument("--drop_out", default=0.1, type=float, help="Drop out in BERT.")
parser.add_argument("--loss_type", default='sfmx', type=str,
help="Loss function types: support kl, x2, sfmx")
parser.add_argument("--freeze_embedding", default=True,
help="Whether to freeze word embeddings in Bert")
# param for dataset
parser.add_argument("--max_token_length", default=90, type=int,
help="The max length of caption tokens.")
parser.add_argument("--max_frame_num", default=10, type=int,
help="The max number of frame before or after boundary.")
parser.add_argument("--max_object_per_frame", default=20, type=int,
help="The max object number in single frame.")
parser.add_argument("--max_action_length", default=3, type=int,
help="The max length of action feature, including difference feature.")
parser.add_argument("--mask_prob", default=0.15, type=float,
help="Probability to mask input sentence during training.")
# param for modeling
parser.add_argument("--num_labels", default=2, type=int,
help="num_labels is 2 for classification and 1 for regression.")
parser.add_argument("--obj_feature_dim", default=1031, type=int,
help="The Object Feature Dimension.")
parser.add_argument("--frame_feature_dim", default=1026, type=int,
help="The Frame Feature Dimension.")
parser.add_argument("--act_feature_dim", default=2049, type=int,
help="The Action Feature Dimension.")
parser.add_argument("--label_smoothing", default=0, type=float,
help=".")
parser.add_argument("--drop_worst_ratio", default=0, type=float,
help=".")
parser.add_argument("--drop_worst_after", default=0, type=int,
help=".")
parser.add_argument('--temperature', type=float, default=0.05,
help="temperature in softmax for loss computing")
args = parser.parse_args()
args.gpu_ids = list(map(int, args.gpu_ids.split(' ')))
args.device = torch.device("cuda:" + str(args.gpu_ids[0]) if torch.cuda.is_available() else "cpu")
# os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids if torch.cuda.is_available() else "-1"
args.num_gpus = len(args.gpu_ids)
assert args.num_gpus <= torch.cuda.device_count(), "Some of GPUs in args are unavailable, check your parameter."
output_dir = args.output_dir
if not os.path.exists(output_dir):
os.mkdir(output_dir)
if args.ablation is not None:
args.ablation = args.ablation.split('-')
global logger
logger = setup_logger("retrieval", output_dir)
logger.info("Device: %s, n_gpu: %s", args.device, args.num_gpus)
set_seed(args.seed, args.num_gpus)
config_class, model_class, tokenizer_class = BertConfig, BertForVideoRetrieval, BertTokenizer
if args.do_train:
config = config_class.from_pretrained(args.model_name_or_path)
config.hidden_dropout_prob = args.drop_out
config.loss_type = args.loss_type
config.num_labels = args.num_labels
config.obj_feature_dim = args.obj_feature_dim
config.frame_feature_dim = args.frame_feature_dim
config.act_feature_dim = args.act_feature_dim
config.freeze_embedding = args.freeze_embedding
config.label_smoothing = args.label_smoothing
config.drop_worst_ratio = args.drop_worst_ratio
config.drop_worst_after = args.drop_worst_after
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
model = model_class.from_pretrained(args.model_name_or_path, config=config)
else:
checkpoint = args.eval_model_dir
assert os.path.isdir(checkpoint)
config = config_class.from_pretrained(checkpoint)
tokenizer = tokenizer_class.from_pretrained(checkpoint)
logger.info("Evaluate the following checkpoint: %s", checkpoint)
model = model_class.from_pretrained(checkpoint, config=config)
model.to(args.device)
if args.num_gpus > 1:
model = nn.DataParallel(model, device_ids=args.gpu_ids)
logger.info("Training/evaluation parameters %s", args)
if args.do_train:
train_dataloader = retrieval_dataloader(args, tokenizer, split='train')
val_dataloader = retrieval_dataloader(args, tokenizer, split='val')
val_corpus_dataloader = retrieval_dataloader(args, tokenizer, split='val', corpus=True)
last_checkpoint = train(args, train_dataloader, val_dataloader, val_corpus_dataloader, model, tokenizer)
# test the last checkpoint after training
if args.do_test:
logger.info("Evaluate for Retrieval after Training")
test_dataloader = retrieval_dataloader(args, tokenizer, split='test')
test_corpus_dataloader = retrieval_dataloader(args, tokenizer, split='test', corpus=True)
evaluate(args, test_dataloader, test_corpus_dataloader, model, last_checkpoint)
# inference and evaluation
elif args.do_test or args.do_eval:
logger.info("Evaluate for Retrieval")
test_dataloader = retrieval_dataloader(args, tokenizer, split='test')
test_corpus_dataloader = retrieval_dataloader(args, tokenizer, split='test', corpus=True)
if not args.do_eval:
raise Exception
else:
evaluate(args, test_dataloader, test_corpus_dataloader, model, checkpoint)
if __name__ == '__main__':
main()