-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_net_u.py
250 lines (217 loc) · 8.5 KB
/
train_net_u.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Panoptic-DeepLab Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import logging
import os
import time
import weakref
import torch
import detectron2.data.transforms as T
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader
from detectron2.engine import (
DefaultTrainer,
SimpleTrainer,
AMPTrainer,
default_argument_parser,
default_setup,
launch,
create_ddp_model,
)
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
)
from detectron2.utils.logger import _log_api_usage
from detectron2.projects.deeplab import build_lr_scheduler
from detectron2.projects.panoptic_deeplab import (
PanopticDeeplabDatasetMapper,
add_panoptic_deeplab_config,
)
from detectron2.solver import get_default_optimizer_params
from detectron2.solver.build import maybe_add_gradient_clipping
# Custom
import detectron2.projects.panoptic_deeplab.datasets
from detectron2.projects.panoptic_deeplab import InstCalU
def set_all_requires_grad_false(module):
for module in module.modules():
for param in module.parameters():
param.requires_grad = False
def set_norm_requires_grad(module, flag=True):
for module in module.modules():
for name, param in module.named_parameters():
if 'momentum' in name:
param.requires_grad = flag
def build_sem_seg_train_aug(cfg):
augs = [
T.ResizeShortestEdge(
cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
)
]
if cfg.INPUT.CROP.ENABLED:
augs.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE))
augs.append(T.RandomFlip())
return augs
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains a number pre-defined logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop.
"""
def __init__(self, cfg):
"""
Args:
cfg (CfgNode):
"""
# From TrainerBase
self._hooks = []
self.iter = 0
self.start_iter = 0
assert not cfg.SOLVER.AMP.ENABLED, 'Not implemented'
logger = logging.getLogger("detectron2")
if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2
setup_logger()
cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())
# Assume these objects must be constructed in this order.
model = self.build_model(cfg)
data_loader = self.build_train_loader(cfg)
model = create_ddp_model(model, broadcast_buffers=False)
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
model,
cfg.OUTPUT_DIR,
trainer=weakref.proxy(self),
)
self.start_iter = 0
self.max_iter = cfg.SOLVER.MAX_ITER
self.cfg = cfg
self.register_hooks(self.build_hooks())
self.resume_or_load(resume=args.resume)
self.checkpointer.model = InstCalU.convert_adaptive_batchnorm(self.checkpointer.model, per_channel=True, separate=True, init=0.1)
self.checkpointer.model.cuda()
set_all_requires_grad_false(self.checkpointer.model)
set_norm_requires_grad(self.checkpointer.model, True)
optimizer = self.build_optimizer(cfg, model)
self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
model, data_loader, optimizer
)
self.scheduler = self.build_lr_scheduler(cfg, optimizer)
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if cfg.MODEL.PANOPTIC_DEEPLAB.BENCHMARK_NETWORK_SPEED:
return None
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type in ["cityscapes_panoptic_seg", "coco_panoptic_seg"]:
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
if evaluator_type == "cityscapes_panoptic_seg":
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
if evaluator_type == "coco_panoptic_seg":
# `thing_classes` in COCO panoptic metadata includes both thing and
# stuff classes for visualization. COCOEvaluator requires metadata
# which only contains thing classes, thus we map the name of
# panoptic datasets to their corresponding instance datasets.
dataset_name_mapper = {
"coco_2017_val_panoptic": "coco_2017_val",
"coco_2017_val_100_panoptic": "coco_2017_val_100",
}
evaluator_list.append(
COCOEvaluator(dataset_name_mapper[dataset_name], output_dir=output_folder)
)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_train_loader(cls, cfg):
mapper = PanopticDeeplabDatasetMapper(cfg, augmentations=build_sem_seg_train_aug(cfg))
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
"""
Build an optimizer from config.
"""
params = get_default_optimizer_params(
model,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM,
)
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
return maybe_add_gradient_clipping(cfg, torch.optim.SGD)(
params,
cfg.SOLVER.BASE_LR,
momentum=cfg.SOLVER.MOMENTUM,
nesterov=cfg.SOLVER.NESTEROV,
)
elif optimizer_type == "ADAM":
return maybe_add_gradient_clipping(cfg, torch.optim.Adam)(params, cfg.SOLVER.BASE_LR)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_panoptic_deeplab_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
# NOTE: Need to convert first to load weights correctly
model = InstCalU.convert_adaptive_batchnorm(model, per_channel=True, separate=True, init=0.1)
model.cuda()
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
#trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)