|
| 1 | +public class Population { |
| 2 | + private City[] cities; |
| 3 | + private int populationNum; |
| 4 | + private float mutationRate; |
| 5 | + private float crossoverRate; |
| 6 | + private DNA[] population = new DNA[populationNum]; |
| 7 | + private DNA bestOne; |
| 8 | + private double shortestDistance; |
| 9 | + private double bestFitness; |
| 10 | + private double sumFitness; |
| 11 | + private int generationCount = 1; |
| 12 | + |
| 13 | + City[] getBestRoute() { |
| 14 | + return bestOne.getGenes(); |
| 15 | + } |
| 16 | + |
| 17 | + public double getShortestDistance() { |
| 18 | + return this.shortestDistance; |
| 19 | + } |
| 20 | + public int getGenerationCount() { |
| 21 | + return this.generationCount; |
| 22 | + } |
| 23 | + |
| 24 | + Population(City[] cities, int populationNum, float crossoverRate, float mutationRate) { |
| 25 | + this.cities = cities; |
| 26 | + this.populationNum = populationNum; |
| 27 | + this.population = new DNA[populationNum]; |
| 28 | + this.crossoverRate = crossoverRate; |
| 29 | + this.mutationRate = mutationRate; |
| 30 | + println("Generation " + generationCount); |
| 31 | + println("-----------------------------"); |
| 32 | + for (int i = 0; i < populationNum; i++) { |
| 33 | + DNA dna = new DNA(this.cities, true); |
| 34 | + population[i] = dna; |
| 35 | + } |
| 36 | + } |
| 37 | + |
| 38 | + void calcFitness() { |
| 39 | + sumFitness = 0; |
| 40 | + sumFitness += population[0].calcFitness(); |
| 41 | + shortestDistance = population[0].getDistance(); |
| 42 | + bestFitness = population[0].getFitness(); |
| 43 | + bestOne = population[0]; |
| 44 | + for (int i = 1; i < populationNum; i++) { |
| 45 | + double currentFitness = population[i].calcFitness(); |
| 46 | + sumFitness += currentFitness; |
| 47 | + if (currentFitness > bestOne.getFitness()) { |
| 48 | + shortestDistance = population[i].getDistance(); |
| 49 | + bestFitness = currentFitness; |
| 50 | + bestOne = population[i]; |
| 51 | + } |
| 52 | + } |
| 53 | + println("Shortest Distance: " + shortestDistance); |
| 54 | + println("Best Fitness: " + bestFitness); |
| 55 | + println(); |
| 56 | + } |
| 57 | + |
| 58 | + void naturalSelection() { |
| 59 | + DNA[] nextGeneration = new DNA[populationNum]; |
| 60 | + nextGeneration[0] = new DNA(bestOne.getGenes(),false); |
| 61 | + for (int i = 1; i < populationNum; i += 2) { |
| 62 | + DNA[] parents = new DNA[2]; |
| 63 | + for (int j = 0; j < 2; j++) { |
| 64 | + double randomFitness = random((float)(sumFitness)); |
| 65 | + int index = -1; |
| 66 | + while (randomFitness >= 0) { |
| 67 | + randomFitness -= population[++index].getFitness(); |
| 68 | + } |
| 69 | + parents[j] = population[index]; |
| 70 | + } |
| 71 | + final int k = floor(random(cityNum)); //<>// |
| 72 | + final int j = floor(random(cityNum)); |
| 73 | + final int start = min(k,j); |
| 74 | + final int end = max(k,j); |
| 75 | + DNA child1 = parents[0].crossover(parents[1], start, end, crossoverRate); |
| 76 | + DNA child2 = parents[1].crossover(parents[0], start, end, crossoverRate); |
| 77 | + child1 = child1.mutate(mutationRate); |
| 78 | + child2 = child2.mutate(mutationRate); |
| 79 | + nextGeneration[i] = child1; |
| 80 | + nextGeneration[i+1] = child2; |
| 81 | + } |
| 82 | + this.population = nextGeneration; |
| 83 | + println("Generation " + ++generationCount); |
| 84 | + println("-----------------------------"); |
| 85 | + } |
| 86 | +} |
0 commit comments