-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseg.py
78 lines (60 loc) · 2.86 KB
/
seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import logging
import sys
import os
import shutil
import random
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from sklearn.metrics import accuracy_score
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import load_model
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
from tensorflow.keras.preprocessing.image import ImageDataGenerator
data_root = r"C:\Users\63423\Documents\#work\DSI"
x = ImageDataGenerator()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=5,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=1,
help='Batch size', dest='batchsize')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.0001,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .h5 file') # pth -> h5
# parser.add_argument('-s', '--scale', dest='scale', type=float, default=0.5,
# help='Downscaling factor of the images')
# parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0,
# help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
# 1. 导入环境,并初始化
args = get_args()
config = ConfigProto()
config.gpu_options.allow_growth = True # 设置gpu
# use CPU to train your model, please add " os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
session = InteractiveSession(config=config)
log_path = os.path.join("./logs/", args.epochs, "_", args.model)
logging.basicConfig(level=logging.INFO, filename=log_path, filemode='a', format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
cpus = tf.config.experimental.list_physical_devices(device_type='CPU')
logging.info(f'Using device {gpus} \n {cpus} \n')
net = UNet_3Plus.UNet_3Plus_DeepSup()
if args.load:
net.load_state_dict(
torch.load(args.load, map_location=device)
)
logging.info(f'Model loaded from {args.load}')
net.to(device=device)
session.close()