forked from NYUSHCS/UniGLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_GNN.sh
32 lines (30 loc) · 1.52 KB
/
run_GNN.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/bin/bash
#SBATCH -p sfscai
#SBATCH -N 1
#SBATCH -n 6
#SBATCH --gres=gpu:1
module purge
module load miniconda
source activate yfhpc
#pubmed' 'ogbn-arxiv' 'ogbn-product' 'arxivTA'
#'Amazon-Children' 'Amazon-Computers' 'Amazon-Fitness' 'Amazon-History' 'Amazon-Photo' 'VideoGames'
for dataset in 'pubmed'
do
for feature_type in 'bert'
do
for split in 'semi-supervised' #'supervised'
#for split in 'supervised' #'supervised'
do
mkdir -p "results/out/$dataset/$feature_type/$split"
# 如果数据集名称包含'ogb'并且split为'supervised',则跳过此次循环
if [[ $dataset == *"ogb"* && $split == "supervised" ]]; then
continue
fi
# 运行模型训练
#python -m core.trainGNNs gnn.model.name MLP gnn.train.feature_type $feature_type dataset $dataset split $split >> "results/out/$dataset/$feature_type/$split/mlp.out"
#python -m core.trainGNNs gnn.model.name GCN gnn.train.feature_type $feature_type dataset $dataset split $split >> "results/out/$dataset/$feature_type/$split/gcn.out"
#python -m core.trainGNNs gnn.model.name SAGE gnn.train.feature_type $feature_type dataset $dataset split $split >> "results/out/$dataset/$feature_type/$split/sage.out"
python -m core.trainGNNs gnn.model.name RevGAT gnn.train.lr 0.002 gnn.train.dropout 0.5 gnn.train.feature_type $feature_type dataset $dataset split $split >> "results/out/$dataset/$feature_type/$split/revgat.out"
done
done
done