forked from JeffersonLab/simc_gfortran
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrem.f
653 lines (525 loc) · 16.4 KB
/
brem.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
! BREM.FOR
! Exact soft photon bremstrahlung calculation of
! delta, delta^\prime, and exponentiations thereof
real*8 function brem(ein,eout,egamma,radiate_proton,bsoft,bhard,dbsoft)
implicit none
include 'brem.inc'
real*8 pi, am, ame, e2
parameter (pi=3.141592653589793)
parameter (am= .93827231)
parameter (ame= .00051099906)
parameter (e2= 1./137.0359895)
real*8 ein ! electron energy
real*8 eout ! final electron energy
real*8 egamma ! energy of bremsstrahling photon
real*8 eang,ak,akp,ap,pang,eta,ape
real*8 q2,de
real*8 aprod,adot,ar1,ar2,alpha
real*8 bpi,bpf,bpp,bei,bef,bee,bepii,bepif,bepfi,bepff
real*8 dbpi,dbpf,dbpp,dbei,dbef,dbee,dbepii,dbepif,dbepfi,
> dbepff !derivatives of b's
real*8 b,bz,bzz,db,dbz,dbzz,bhard,bsch,spence,bsoft,dbsoft
real*8 inter
logical radiate_proton
! Convert to GeV
ak=ein/1000.
akp=eout/1000.
de=egamma/1000.
! electron scattering angle
eang= 2.*asin((am/(2.*ak)*(ak/akp-1.))**0.5)
eta= 1.+2.*ak*sin(eang/2.)**2/am
q2= 4.*ak*akp*sin(eang/2.)**2
! final proton energy/momentum/scattering angle.
ape= am+ak-akp
ap= sqrt(ape**2-am**2)
pang= acos((ak-akp*cos(eang))/ap)
if(produce_output) then
write(6,*)' q2 ',q2
write(6,*)' k ',ak
write(6,*)' kp ',akp
write(6,*)' eang ',eang*180./pi
write(6,*)' ap ',ap
write(6,*)' pang ',pang*180./pi
write(6,*)' eta ',eta
endif
! Calculate components of delta soft
! ... electron terms
! direct initial electron
aprod= 1.e0
bei= aprod*(-1./(2.*pi))*log(ak/de)
dbei= aprod*(1./(2.*pi*de))
! direct final electron
aprod= 1.e0
bef= aprod*(-1./(2.*pi))*log(akp/de)
dbef= aprod*(1./(2.*pi*de))
! e-e interference
aprod= -1.e0
adot= ak*akp*(1.-cos(eang))
alpha= 2.*ame**2-2.*adot
ar1= 0.5+sqrt(adot**2-ame**4)/alpha
ar2= 0.5-sqrt(adot**2-ame**4)/alpha
bee= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,ak,akp,de)
dbee= aprod*adot/(pi*alpha*(ar1-ar2)*de)*
> (log((ar1-1)/ar1)-log((ar2-1)/ar2))
if(produce_output) write(6,*) ar1,ar2
! ... proton terms
if (radiate_proton) then
! initial p direct
aprod= 1.e0
bpi= aprod*(-1./(2.*pi))*log(am/de)
dbpi= aprod*(1./(2.*pi*de))
! final p direct
aprod= 1.e0
bpf= aprod*(-1./(2.*pi))*log(ape/de)
dbpf= aprod*(1/(2.*pi*de))
! p-p interference
aprod= -1.e0
adot= am*ape
alpha= 2.*am**2-2.*adot
ar1= 0.5+sqrt(adot**2-am**4)/alpha
ar2= 0.5-sqrt(adot**2-am**4)/alpha
bpp= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,am,ape,de)
dbpp= aprod*adot/(pi*alpha*(ar1-ar2)*de)*
> (log((ar1-1)/ar1)-log((ar2-1)/ar2))
if(produce_output) write(6,*) ar1,ar2
! ei-pi interference
aprod= -1.e0
adot= ak*am
alpha= am**2+ame**2-2.*adot
ar1= (am**2-adot+sqrt(adot**2-(ame*am)**2))/alpha
ar2= (am**2-adot-sqrt(adot**2-(ame*am)**2))/alpha
bepii= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,ak,am,de)
dbepii= aprod*adot/(pi*alpha*(ar1-ar2)*de)*
> (log((ar1-1)/ar1)-log((ar2-1)/ar2))
if(produce_output) write(6,*) ar1,ar2
! ef-pf interference
aprod= -1.e0
adot= akp*ape-akp*ap*cos(eang+pang)
alpha= am**2+ame**2-2.*adot
ar1= (am**2-adot+sqrt(adot**2-(ame*am)**2))/alpha
ar2= (am**2-adot-sqrt(adot**2-(ame*am)**2))/alpha
bepff= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,akp,ape,de)
dbepff= aprod*adot/(pi*alpha*(ar1-ar2)*de)*
> (log((ar1-1)/ar1)-log((ar2-1)/ar2))
if(produce_output) write(6,*) ar1,ar2
! ei-pf interference
aprod= 1.e0
adot= ak*ape-ak*ap*cos(pang)
alpha= am**2+ame**2-2.*adot
ar1= (am**2-adot+sqrt(adot**2-(ame*am)**2))/alpha
ar2= (am**2-adot-sqrt(adot**2-(ame*am)**2))/alpha
bepif= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,ak,ape,de)
dbepif= aprod*adot/(pi*alpha*(ar1-ar2)*de)*
> (log((ar1-1)/ar1)-log((ar2-1)/ar2))
if(produce_output) write(6,*) ar1,ar2
! ef-pi interference
aprod= 1.e0
adot= akp*am
alpha= am**2+ame**2-2.*adot
ar1= (am**2-adot+sqrt(adot**2-(ame*am)**2))/alpha
ar2= (am**2-adot-sqrt(adot**2-(ame*am)**2))/alpha
bepfi= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,akp,am,de)
dbepfi= aprod*adot/(pi*alpha*(ar1-ar2)*de)*
> (log((ar1-1)/ar1)-log((ar2-1)/ar2))
if(produce_output) write(6,*) ar1,ar2
endif ! <radiate_proton>
! All together now!
b= 2.*e2*(bei+bef+bee)
if (radiate_proton) then
bzz= 2.*e2*(bpi+bpf+bpp)
bz= 2.*e2*(bepii+bepff+bepif+bepfi)
else
bzz = 0.0
bz = 0.0
endif
bsoft=b+bz+bzz
bhard= -1.*(e2/pi)*(-28/9.+13./6.*log(q2/ame**2))
db= 2.*e2*(dbei+dbef+dbee)
if (radiate_proton) then
dbzz= 2.*e2*(dbpi+dbpf+dbpp)
dbz= 2.*e2*(dbepii+dbepff+dbepif+dbepfi)
else
dbzz = 0.0
dbz = 0.0
endif
dbsoft= db+dbz+dbzz
if(produce_output) then
write(6,*)' ----- results ----- '
write(6,*)' b= ',b
write(6,*)' bz= ',bz
write(6,*)' bzz= ',bzz
write(6,*)' bhard= ',bhard
write(6,*)' total= ',bsoft+bhard
write(6,*)' exp= ',1.-exp(-1.*(bsoft))*(1.-bhard)
write(6,*)' '
write(6,*)' ultra-relativistic limit'
call srad(ak,akp,eang,q2,ame,am,ap,de,produce_output)
write(6,*)' Schwinger Result'
bsch= 2.*e2/pi*((log(ak/de)-13./12.)*(log(q2/ame**2)-1.)+17./36.+
> 0.5*(pi**2/6.-spence((cos(eang/2.))**2)))
write(6,*)' b= ',bsch
endif
! ... and the result --> the value of the radiative cross-section,
! dsigma/dEgamma = -dbsoft * exp(-bsoft) * (1-bhard)
! ......... the derivative has dimension 1/[energy] --> convert back to MeV
dbsoft = dbsoft/1000.
if (exponentiate) then
brem = -dbsoft/exp(bsoft)
else
brem = 1.-dbsoft
endif
if (include_hard) brem = brem*(1.-bhard)
return
end
!-----------------------------------
real*8 function inter(calculate_spence,alpha,ar1,ar2,e1,e2,de)
! explicit evaluation of integral ... may or may not ignore spence functions
implicit none
real*8 pi
parameter (pi=3.141592653589793)
real*8 alpha,ar1,ar2,e1,e2,de
real*8 de2,amult,arg1,arg2,arg3,arg4,spence
logical calculate_spence
de2 = e1-e2
amult = -1./(alpha*(ar1-ar2))
inter = log(abs((e2/de)+ar1*(de2/de)))*log(abs((ar1-1.)/ar1)) -
> log(abs((e2/de)+ar2*(de2/de)))*log(abs((ar2-1.)/ar2))
if (calculate_spence) then
arg1= (de2/(e2+ar1*de2))*(ar1-1.)
arg2= (de2/(e2+ar1*de2))*(ar1)
arg3= (de2/(e2+ar2*de2))*(ar2-1.)
arg4= (de2/(e2+ar2*de2))*(ar2)
inter = inter - spence(arg1)+spence(arg2)+spence(arg3)-spence(arg4)
endif
inter= inter*amult/(pi)
return
end
!-----------------------------------
subroutine srad(ak,akp,eang,q2,ame,am,ap,de,produce_output)
! calculates ultra-relativistic limit
implicit none
real*8 pi, alpha
parameter (pi = 3.141592653589793)
parameter (alpha = 1./137.0359895)
real*8 ak,akp,eang,q2,ame,am,ap
real*8 eta,dsoft,dhard,de
real*8 dsoftz,dsoftzz,ep
logical produce_output
ep= sqrt(ap**2+am**2)
dhard= -13./12.*(log(q2/ame**2)-1.)+17./36.
eta= 1.+2.*ak*(sin(eang/2.)**2)/am
dsoft= alpha/pi*log(ak*akp/de**2)*(log(q2/ame**2)-1.)
dsoftz= alpha/pi*log(eta)*(log(ak*akp/de**2)+log(am*ep/de**2))
dsoftzz= alpha/pi*log(am*ep/de**2)*(log(q2/am**2)-1.)
if(dsoftzz.le.0) dsoftzz=0.0
if (produce_output) then
write(6,*)' '
write(6,*)' b= ',dsoft
write(6,*)' bz= ',dsoftz
write(6,*)' bzz= ',dsoftzz
endif
return
end
!-----------------------------------
real*8 function spence(ax)
implicit none
real*8 pi
parameter (pi=3.141592653589793)
real*8 ax,bx
bx= abs(ax)
! ... N.B. Have replaced the former calculation (commented out) with an
! ... approximate expression -- saves a WHALE of CPU!
!
! if(bx.lt.1) then
! spence= ssum(ax,100)
! else if (ax.gt.1) then
! spence= -0.5*(log(bx))**2+pi**2/3.-ssum(1./ax,100)
! else if (ax.le.-1) then
! spence= -0.5*(log(bx))**2-pi**2/6.-ssum(1./ax,100)
! else if (ax.eq.1) then
! spence= pi**2/6.
! else if (ax.eq.-1) then
! spence= -pi**2/12.
! endif
if (bx.le.1) then
spence = 0.0
else
spence = -0.5*(log(bx))**2
endif
return
end
!-----------------------------------
real*8 function ssum(as,n)
implicit none
integer n,i
real*8 as
ssum= 0.0
if(as.ne.0) then
if(n.ge.10000) write(6,*)' large n in function ssum (brem.f)'
do i= 1,n
ssum= ssum+as**i/(1.*i)**2
enddo
endif
return
end
!------------------------------------------------------------------------------
real*8 function bremos(egamma, ! photon energy
> k_ix, k_iy, k_iz, ! incoming electron 3-momentum
> k_fx, k_fy, k_fz, ! scattered electron 3-momentum
> p_ix, p_iy, p_iz, ! incoming proton 3-momentum (pm)
> p_fx, p_fy, p_fz, p_fe, ! scattered proton 4-momentum
> radiate_proton, ! proton radiation flag
> bsoft, bhard, dbsoft)
! Calculation of soft photon radiative correction factor and its derivative
! allowing for both initial and final protons to be offshell.
! conventions identical to on-shell calculation
implicit none
include 'brem.inc'
real*8 pi, twopi, ame, e2, mp
parameter (pi=3.141592653589793)
parameter (twopi=2.*pi)
parameter (ame= .00051099906)
parameter (e2= 1./137.0359895)
parameter (mp= .93827231)
type four_vector
real*8 e, x, y, z
end type
real*8 egamma, de
real*8 k_ix,k_iy,k_iz
real*8 k_fx,k_fy,k_fz
real*8 p_ix,p_iy,p_iz
real*8 p_fx,p_fy,p_fz,p_fe
real*8 ami,amf,q2
real*8 aprod,adot,ar1,ar2,alpha
real*8 bpi,bpf,bpp,bei,bef,bee,bepii,bepif,bepfi,bepff
real*8 dbpi,dbpf,dbpp,dbei,dbef,dbee,dbepii,dbepif,
> dbepfi,dbepff !derivatives of b's
real*8 b,bz,bzz,db,dbz,dbzz
real*8 bsoft,bhard,dbsoft,bsch
real*8 inter,inter_prime
logical radiate_proton
type(four_vector):: k_i, k_f, p_i, p_f
! Initialize
! ... put input into local variables, while converting energies/momenta to GeV.
de = egamma/1000.
k_i%x = k_ix/1000.
k_i%y = k_iy/1000.
k_i%z = k_iz/1000.
k_f%x = k_fx/1000.
k_f%y = k_fy/1000.
k_f%z = k_fz/1000.
p_i%x = p_ix/1000.
p_i%y = p_iy/1000.
p_i%z = p_iz/1000.
p_f%e = p_fe/1000.
p_f%x = p_fx/1000.
p_f%y = p_fy/1000.
p_f%z = p_fz/1000.
! ... compute electron energies
k_i%e= (k_i%x**2+k_i%y**2+k_i%z**2+ame**2)**0.5
k_f%e= (k_f%x**2+k_f%y**2+k_f%z**2+ame**2)**0.5
! ........ if he insists on e-m conservation like below, just compute p_i.e
c p_i%e = k_f%e+p_f%e-k_i%e
p_i%e = mp
! ... check energy-momentum conservation
! e_check= abs(k_f%e+p_f%e-k_i%e-p_i%e)
! x_check= abs(k_f%x+p_f%x-k_i%x-p_i%x)
! y_check= abs(k_f%y+p_f%y-k_i%y-p_i%y)
! z_check= abs(k_f%z+p_f%z-k_i%z-p_i%z)
!
! if((e_check.gt.0.0001).or.(x_check.gt.0.0001).or.
! + (y_check.gt.0.0001).or.(z_check.gt.0.0001)) then
! write(6,*)' bad kinematics'
! return
! endif
! ... compute Q2 and masses of initial and final protons
q2=-1.*( (k_f%e-k_i%e)**2-(k_f%x-k_i%x)**2-
> (k_f%y-k_i%y)**2-(k_f%z-k_i%z)**2)
if (produce_output) write(6,*)' q2= ',q2
c ami= ((p_i%e)**2-(p_i%x)**2-(p_i%y)**2-(p_i%z)**2)**0.5
ami= mp
amf= ((p_f%e)**2-(p_f%x)**2-(p_f%y)**2-(p_f%z)**2)**0.5
! Calculate components of delta soft
! ... electron terms
! ........ direct initial electron
aprod= 1.e0
bei= aprod*(-1./twopi)*log(k_i%e/de)
dbei= aprod*(-1./twopi)*(-1./de)
! ........ direct final electron
aprod= 1.e0
bef= aprod*(-1./twopi)*log(k_f%e/de)
dbef= aprod*(-1./twopi)*(-1./de)
! ........ e-e interference
aprod= -1.e0
adot= k_i%e*k_f%e-k_i%x*k_f%x-k_i%y*k_f%y-k_i%z*k_f%z
alpha= 2.*ame**2-2.*adot
ar1= 0.5+sqrt(4.*adot**2-4.*ame**4)/(2.*alpha)
ar2= 0.5-sqrt(4.*adot**2-4.*ame**4)/(2.*alpha)
bee= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,k_i%e,k_f%e,de)
dbee= aprod*adot*inter_prime(alpha,ar1,ar2,de)
if (produce_output) write(6,*) ar1,ar2
! ... proton terms
if (radiate_proton) then
! ........ initial p direct
aprod= 1.e0
bpi= aprod*(-1./twopi)*log(p_i%e/de)
dbpi= aprod*(-1./twopi)*(-1./de)
! ........ final p direct
aprod= 1.e0
bpf= aprod*(-1./twopi)*log(p_f%e/de)
dbpf= aprod*(-1./twopi)*(-1./de)
! ........ p-p interference
aprod= -1.e0
adot= p_i%e*p_f%e-p_i%x*p_f%x-p_i%y*p_f%y-p_i%z*p_f%z
alpha= ami**2+amf**2-2.*adot
ar1= (2.*amf**2-2.*adot+sqrt(4.*adot**2-4.*(ami*amf)**2))/(2.*alpha)
ar2= (2.*amf**2-2.*adot-sqrt(4.*adot**2-4.*(ami*amf)**2))/(2.*alpha)
bpp= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,p_i%e,p_f%e,de)
dbpp= aprod*adot*inter_prime(alpha,ar1,ar2,de)
if (produce_output) write(6,*) ar1,ar2
! ........ ei-pi interference
aprod= -1.e0
adot= k_i%e*p_i%e-k_i%x*p_i%x-k_i%y*p_i%y-k_i%z*p_i%z
alpha= ami**2+ame**2-2.*adot
ar1= (2.*ami**2-2.*adot+sqrt(4.*adot**2-4.*(ame*ami)**2))/(2.*alpha)
ar2= (2.*ami**2-2.*adot-sqrt(4.*adot**2-4.*(ame*ami)**2))/(2.*alpha)
bepii= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,k_i%e,p_i%e,de)
dbepii= aprod*adot*inter_prime(alpha,ar1,ar2,de)
if (produce_output) write(6,*) ar1,ar2
! ........ ef-pf interference
aprod= -1.e0
adot= k_f%e*p_f%e-k_f%x*p_f%x-k_f%y*p_f%y-k_f%z*p_f%z
alpha= amf**2+ame**2-2.*adot
ar1= (2.*amf**2-2.*adot+sqrt(4.*adot**2-4.*(ame*amf)**2))/(2.*alpha)
ar2= (2.*amf**2-2.*adot-sqrt(4.*adot**2-4.*(ame*amf)**2))/(2.*alpha)
bepff= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,k_f%e,p_f%e,de)
dbepff= aprod*adot*inter_prime(alpha,ar1,ar2,de)
if (produce_output) write(6,*) ar1,ar2
! ........ ei-pf interference
aprod= 1.e0
adot= k_i%e*p_f%e-k_i%x*p_f%x-k_i%y*p_f%y-k_i%z*p_f%z
alpha= amf**2+ame**2-2.*adot
ar1=(2.*amf**2-2.*adot+sqrt(4.*adot**2-4.*(ame*amf)**2))/(2.*alpha)
ar2=(2.*amf**2-2.*adot-sqrt(4.*adot**2-4.*(ame*amf)**2))/(2.*alpha)
bepif= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,k_i%e,p_f%e,de)
dbepif= aprod*adot*inter_prime(alpha,ar1,ar2,de)
if (produce_output) write(6,*) ar1,ar2
! ........ ef-pi interference
aprod= 1.e0
adot= k_f%e*p_i%e-k_f%x*p_i%x-k_f%y*p_i%y-k_f%z*p_i%z
alpha= ami**2+ame**2-2.*adot
ar1=(2.*ami**2-2.*adot+sqrt(4.*adot**2-4.*(ame*ami)**2))/(2.*alpha)
ar2=(2.*ami**2-2.*adot-sqrt(4.*adot**2-4.*(ame*ami)**2))/(2.*alpha)
bepfi= aprod*adot*inter(calculate_spence,alpha,ar1,ar2,k_f%e,p_i%e,de)
dbepfi= aprod*adot*inter_prime(alpha,ar1,ar2,de)
if (produce_output) write(6,*) ar1,ar2
endif ! <radiate_proton>
! All together now!
b= 2.*e2*(bei+bef+bee)
if (radiate_proton) then
bzz= 2.*e2*(bpi+bpf+bpp)
bz= 2.*e2*(bepii+bepff+bepif+bepfi)
else
bzz = 0.0
bz = 0.0
endif
bsoft = b + bz + bzz
bhard= -1.*(e2/pi)*(-28/9.+13./6.*log(q2/ame**2))
* bhard= (e2/pi)*(2-1.5*log(q2/ame**2))
* bhard= bhard+vac(q2)
db= 2.*e2*(dbei+dbef+dbee)
if (radiate_proton) then
dbzz= 2.*e2*(dbpi+dbpf+dbpp)
dbz= 2.*e2*(dbepii+dbepff+dbepif+dbepfi)
else
dbzz = 0.0
dbz = 0.0
endif
dbsoft= db+dbz+dbzz
if (produce_output) then
write(6,*)' ----- results ----- '
write(6,*)' b+bhard= ',b+bhard
write(6,*)' bz= ',bz
write(6,*)' bzz= ',bzz
write(6,*)' bhard= ',bhard
write(6,*)' total= ',1-bsoft-bhard
write(6,*)' exp= ',exp(-1.*(bsoft))*(1.-bhard)
write(6,*)' 1-bhard= ',1-bhard
write(6,*)' exps= ',exp(-1.*(bsoft))
write(6,*)' expse= ',exp(-1.*b)
write(6,*)' expsp= ',exp(-1.*(bz+bzz))
write(6,*)' '
write(6,*)' Schwinger Result'
bsch= 2.*e2/pi*((log(k_i%e/de)-13./12.)*(log(q2/ame**2)-1.)+17./36.)
write(6,*)' b= ',bsch
endif
! ... and the result --> the value of the radiative cross-section,
! dsigma/dEgamma = -dbsoft * exp(-bsoft) * (1-bhard)
! ......... the derivative has dimension 1/[energy] --> convert back to MeV
dbsoft = dbsoft/1000. !convert back to MeV
if (exponentiate) then
bremos = -dbsoft/exp(bsoft)
else
bremos = 1.-dbsoft
endif
if (include_hard) bremos = bremos*(1.-bhard)
return
end
!-----------------------------------
c
c explicit evaluation of DERIVATIVE of integral (wrt de)
c
real*8 function inter_prime(alpha,ar1,ar2,de)
implicit none
real*8 pi
parameter (pi=3.141592653589793)
real*8 alpha,ar1,ar2,de
real*8 amult
amult = -1./(alpha*(ar1-ar2))
inter_prime = (-1./de)*amult/pi*
> (log(abs((ar1-1.)/ar1))-log(abs((ar2-1.)/ar2)))
return
end
!-----------------------------------
real*8 function vac(q2)
implicit none
real*8 q2
real*8 am(10),ae(10)
real*8 dele,dell
integer*4 j
real*8 del
am(1)= 0.00051099906
ae(1) = 1.0
am(2)= .1057
ae(2)= 1.0
am(3)= 1.782
ae(3)= 1.0
am(4)= 0.3
ae(4)= 2./3.
am(5)= .3
ae(5)= 1./3.
am(6)= .430
ae(6)= 1./3.
am(7)= 1.5
ae(7)= 2./3.
am(8)= 5.
ae(8)= 1./3.
dele= del(q2,am(1),ae(1))
dell= 0.0
do 20 j= 1,3
dell= dell+del(q2,am(j),ae(j))
20 continue
vac= dell
return
end
!-----------------------------------
real*8 function del(q2,bm,be)
implicit none
real*8 q2,bm,be
real*8 x,alpha
x= 4.*bm**2/q2
alpha= be**2/137.0359895
del= -2.*alpha/(3.*3.14159265)*(-5./3.+x+(1-x/2)*(1+x)**0.5*
> log(((1+x)**0.5+1)/((1+x)**0.5-1)))
return
end