forked from google-research/lasertagger
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_lasertagger_utils.py
277 lines (241 loc) · 10.3 KB
/
run_lasertagger_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Utilities for building a LaserTagger TF model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, Mapping, Optional, Text
from bert import modeling
from bert import optimization
import transformer_decoder
import tensorflow as tf
from official_transformer import model_params
class LaserTaggerConfig(modeling.BertConfig):
"""Model configuration for LaserTagger."""
def __init__(self,
use_t2t_decoder=True,
decoder_num_hidden_layers=1,
decoder_hidden_size=768,
decoder_num_attention_heads=4,
decoder_filter_size=3072,
use_full_attention=False,
**kwargs):
"""Initializes an instance of LaserTagger configuration.
This initializer expects both the BERT specific arguments and the
Transformer decoder arguments listed below.
Args:
use_t2t_decoder: Whether to use the Transformer decoder (i.e.
LaserTagger_AR). If False, the remaining args do not affect anything and
can be set to default values.
decoder_num_hidden_layers: Number of hidden decoder layers.
decoder_hidden_size: Decoder hidden size.
decoder_num_attention_heads: Number of decoder attention heads.
decoder_filter_size: Decoder filter size.
use_full_attention: Whether to use full encoder-decoder attention.
**kwargs: The arguments that the modeling.BertConfig initializer expects.
"""
super(LaserTaggerConfig, self).__init__(**kwargs)
self.use_t2t_decoder = use_t2t_decoder
self.decoder_num_hidden_layers = decoder_num_hidden_layers
self.decoder_hidden_size = decoder_hidden_size
self.decoder_num_attention_heads = decoder_num_attention_heads
self.decoder_filter_size = decoder_filter_size
self.use_full_attention = use_full_attention
class ModelFnBuilder(object):
"""Class for building `model_fn` closure for TPUEstimator."""
def __init__(self, config, num_tags,
init_checkpoint,
learning_rate, num_train_steps,
num_warmup_steps, use_tpu,
use_one_hot_embeddings, max_seq_length):
"""Initializes an instance of a LaserTagger model.
Args:
config: LaserTagger model configuration.
num_tags: Number of different tags to be predicted.
init_checkpoint: Path to a pretrained BERT checkpoint (optional).
learning_rate: Learning rate.
num_train_steps: Number of training steps.
num_warmup_steps: Number of warmup steps.
use_tpu: Whether to use TPU.
use_one_hot_embeddings: Whether to use one-hot embeddings for word
embeddings.
max_seq_length: Maximum sequence length.
"""
self._config = config
self._num_tags = num_tags
self._init_checkpoint = init_checkpoint
self._learning_rate = learning_rate
self._num_train_steps = num_train_steps
self._num_warmup_steps = num_warmup_steps
self._use_tpu = use_tpu
self._use_one_hot_embeddings = use_one_hot_embeddings
self._max_seq_length = max_seq_length
def _create_model(self, mode, input_ids, input_mask, segment_ids, labels,
labels_mask):
"""Creates a LaserTagger model."""
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
model = modeling.BertModel(
config=self._config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=self._use_one_hot_embeddings)
final_hidden = model.get_sequence_output()
if self._config.use_t2t_decoder:
# Size of the output vocabulary which contains the tags + begin and end
# tokens used by the Transformer decoder.
output_vocab_size = self._num_tags + 2
params = _get_decoder_params(self._config, self._use_tpu,
self._max_seq_length, output_vocab_size)
decoder = transformer_decoder.TransformerDecoder(params, is_training)
logits = decoder(input_mask, final_hidden, labels)
else:
if is_training:
# I.e., 0.1 dropout
final_hidden = tf.nn.dropout(final_hidden, keep_prob=0.9)
logits = tf.layers.dense(
final_hidden,
self._num_tags,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),
name="output_projection")
with tf.variable_scope("loss"):
loss = None
per_example_loss = None
if mode != tf.estimator.ModeKeys.PREDICT:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
per_example_loss = tf.truediv(
tf.reduce_sum(loss, axis=1),
tf.dtypes.cast(tf.reduce_sum(labels_mask, axis=1), tf.float32))
loss = tf.reduce_mean(per_example_loss)
pred = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
else:
if self._config.use_t2t_decoder:
pred = logits["outputs"]
# Transformer decoder reserves the first two IDs to the begin and the
# end token so we shift the IDs back.
pred -= 2
else:
pred = tf.cast(tf.argmax(logits, axis=-1), tf.int32)
return (loss, per_example_loss, pred)
def build(self):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s", name, features[name].shape)
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
labels = None
labels_mask = None
if mode != tf.estimator.ModeKeys.PREDICT:
if self._config.use_t2t_decoder:
# Account for the begin and end tokens used by Transformer.
labels = features["labels"] + 2
else:
labels = features["labels"]
labels_mask = tf.cast(features["labels_mask"], tf.float32)
(total_loss, per_example_loss, predictions) = self._create_model(
mode, input_ids, input_mask, segment_ids, labels, labels_mask)
tvars = tf.trainable_variables()
initialized_variable_names = {}
scaffold_fn = None
if self._init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars,
self._init_checkpoint)
if self._use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(self._init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(self._init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
tf.logging.info("Initializing the model from: %s",
self._init_checkpoint)
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, self._learning_rate, self._num_train_steps,
self._num_warmup_steps, self._use_tpu)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
scaffold_fn=scaffold_fn)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(per_example_loss, labels, labels_mask, predictions):
"""Compute eval metrics."""
accuracy = tf.cast(
tf.reduce_all(
tf.logical_or(
tf.equal(labels, predictions),
~tf.cast(labels_mask, tf.bool)),
axis=1), tf.float32)
return {
# This is equal to the Exact score if the final realization step
# doesn't introduce errors.
"sentence_level_acc": tf.metrics.mean(accuracy),
"eval_loss": tf.metrics.mean(per_example_loss),
}
eval_metrics = (metric_fn,
[per_example_loss, labels, labels_mask, predictions])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
else:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode, predictions={"pred": predictions},
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
def _get_decoder_params(config, use_tpu,
max_seq_length,
output_vocab_size):
"""Returns hyperparameters for TransformerDecoder.
Args:
config: LaserTagger model configuration.
use_tpu: Whether to train on TPUs.
max_seq_length: Maximum sequence length.
output_vocab_size: Size of the output vocabulary.
Returns:
Hyperparameter dictionary.
"""
params = model_params.BASE_PARAMS
params.update(
num_hidden_layers=config.decoder_num_hidden_layers,
hidden_size=config.decoder_hidden_size,
num_heads=config.decoder_num_attention_heads,
filter_size=config.decoder_filter_size,
vocab_size=output_vocab_size,
use_tpu=use_tpu,
max_length=max_seq_length,
# This parameter should not be changed since we want the number of decoded
# tags to equal the number of source tokens.
extra_decode_length=0)
return params