-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSWkernel.py
51 lines (42 loc) · 1.29 KB
/
SWkernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
from numba import njit, prange
@njit
def SW_kernel(x1,x2, w = 0.02, s = 0.03):
x1 = [char for char in x1]
x2 = [char for char in x2]
n1 = len(x1)
n2 = len(x2)
S = np.zeros((n1,n2))
for i in prange(n1):
for j in prange(n2):
if x1[i] == x2[j]:
S[i,j] = s
else:
S[i,j] = -s
H = np.zeros((n1+1,n2+1))
"""
# original version
max1 = np.zeros(n1 +1)
for j in range(1,n2+1):
for t in prange(n1+1):
max1[t] = np.max(np.array([max1[t],H[t,j-1]])) - w
max2 = 0
for i in range(1,n1+1):
max2 = np.max(np.array([H[i-1,j],max2])) - w
H[i,j] = np.max(np.array([ H[i-1,j-1] + S[i-1,j-1] , max2 , max1[i], 0]))
"""
# faster version
for j in range(1,n1+1):
for i in range(1,n2+1):
H[i,j] = np.max(np.array([ H[i-1,j-1]+S[i-1,j-1], H[i-1,j]-w, H[i,j-1]-w, 0 ]))
return np.max(H)
@njit
def SW_K_Mat(X,w = 0.02, s = 0.03 ):
n = len(X)
K = np.zeros((n,n))
for h in prange(n):
for l in prange(h , n):
x1, x2 = X[h], X[l]
K[h,l] = SW_kernel(x1,x2, w = w, s = s)
K[l,h] = K[h,l]
return K