-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain
32 lines (24 loc) · 915 Bytes
/
main
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
model1 = Discriminator().to(device)
model2 = Generator().to(device)
#optimizer
lr = 0.0002
optimizer1 = optim.Adam(model1.parameters(), lr = lr)
optimizer2 = optim.Adam(model2.parameters(), lr = lr)
import matplotlib.pyplot as plt
for j in range(50):
for i , (image , _) in enumerate(train_loader):
optimizer1.zero_grad()
Dloss = model1.loss(image , model2)
Dloss.backward()
optimizer1.step()
for k in range(3):
optimizer2.zero_grad()
Gloss , _ = model2.loss(image , model1)
Gloss.backward()
optimizer2.step()
if i%10 == 0:
print(Dloss)
z = Variable(torch.randn(1, 100 , 1 , 1 ).to('cpu'))
output = model2(z)
plt.imshow(output.cpu().detach().numpy().reshape(64,64) , cmap='Greys_r')
plt.show()