-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtf_main_DeepFM.py
174 lines (150 loc) · 6.44 KB
/
tf_main_DeepFM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#encoding=utf-8
from torch.utils.tensorboard import SummaryWriter
import wandb
import sys
import time
import os
import __init__
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
sys.path.append(__init__.config['data_path']) # add your data path here
from datasets import as_dataset
from tf_trainer import Trainer, create_logger
from irazor_models import *
import traceback
import random
import numpy as np
import datetime
from glob import glob
data_name = 'avazu'
dataset = as_dataset(data_name)
backend = 'tf'
batch_size = 128
train_data_param = {
'gen_type': 'train',
'random_sample': True,
'batch_size': batch_size,
'split_fields': False,
'on_disk': True,
'squeeze_output': True,
}
test_data_param = {
'gen_type': 'test',
'random_sample': False,
'batch_size': batch_size,
'split_fields': False,
'on_disk': True,
'squeeze_output': True,
}
def seed_tensorflow(seed=1217):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
tf.compat.v1.set_random_seed(seed)
def run_one_model(model=None,learning_rate=1e-3,decay_rate=1.0,epsilon=1e-8,ep=5, grda_c=0.005,
grda_mu=0.51, learning_rate2=1e-3, decay_rate2=1.0, retrain_stage=False, writer=None, logger=None):
n_ep = ep * 2
train_param = {
'opt1': 'adagrad',
'opt2': 'adagrad',
'loss': 'weight',
'pos_weight': 1.0,
'n_epoch': n_ep,
'train_per_epoch': dataset.train_size / ep, # split training data
'test_per_epoch': dataset.test_size,
'early_stop_epoch': int(0.5*ep),
'batch_size': batch_size,
'learning_rate': learning_rate,
'decay_rate': decay_rate,
'learning_rate2': learning_rate2,
'decay_rate2': decay_rate2,
'epsilon':epsilon,
'load_ckpt': False,
'ckpt_time': 10000,
'grda_c': grda_c,
'grda_mu': grda_mu,
'test_every_epoch': max(int(ep / 5),1),
'retrain_stage': retrain_stage,
'writer': writer,
'logger': logger,
}
train_gen = dataset.batch_generator(train_data_param)
test_gen = dataset.batch_generator(test_data_param)
trainer = Trainer(model=model, train_gen=train_gen, test_gen=test_gen, **train_param)
trainer.fit()
trainer.session.close()
import math
if __name__=="__main__":
# general parameter
learning_rate = 0.01
split_epoch = 5
mlp = [700]*5+[1]
seed_tensorflow(seed=1217)
pretrain = True
#config = "xDeepFM_config"
#config = "DNN_config"
config = "FDE_config"
if pretrain:
model_string_name = "DeepFM_Pretrain"
model = DeepFMPretrainAndRetrain(init='xavier', num_inputs=dataset.max_length, input_emb_size_config=[30]*dataset.max_length, input_feature_min=dataset.feat_min, input_feat_num=dataset.feat_sizes, l2_weight=0.001, l2_bias=0.001, target_vec_sizes=[0,1,2,4,8,16,30], fid_loss_wt=1e-4, temperature=0.05,mlp=mlp, bn=False, mode="pretrain")
else:
if config == "DNN_config":
model_string_name = "DeepFM_Retrain_DNN"
avazu_emb_configs = [[1, 1], [2, 12], [3, 18], [5, 18], [6, 1], [7, 1], [8, 5], [9, 22], [10, 18], [12, 1], [13, 5], [16, 6], [19, 6], [20, 3], [21, 2], [22, 3]]
elif config == "DeepFM_config":
model_string_name = "DeepFM_Retrain"
avazu_emb_configs = []
else:
model_string_name = "DeepFM_Retrain_FDE"
avazu_emb_configs = [[i, 30] for i in range(dataset.max_length)]
emb_configs = avazu_emb_configs
input_size_config =[0] * dataset.max_length
total_dim = 0
total_params = 0
total_fieds = 0
drop_list = list(range(dataset.max_length))
for field,dim in emb_configs:
input_size_config[field] = dim
total_dim += dim
total_params += dim * dataset.feat_sizes[field]
total_fieds += 1
drop_list.remove(field)
print("**"*50)
print(f"config-{config}, fileds-{total_fieds}, parms-{total_params}, dim-{total_dim}. Dropfields-{drop_list}.")
print("**"*50)
model = DeepFMPretrainAndRetrain(init='xavier', num_inputs=dataset.max_length, input_emb_size_config=input_size_config, input_feature_min=dataset.feat_min, input_feat_num=dataset.feat_sizes, l2_weight=0.001, l2_bias=0.001, temperature=0.05,mlp=mlp, bn=False, mode="retrain")
# Setup an experiment folder:
base_dir = "/home/ubuntu/results/"
os.makedirs(base_dir + model_string_name, exist_ok=True)
results_dir = os.path.join(base_dir, model_string_name, data_name)
os.makedirs(results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{results_dir}/*"))
experiment_dir = f"{results_dir}/{experiment_index:03d}-{mlp}-bs-{batch_size}" # Create an experiment folder
#checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
#os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs(experiment_dir+"/tf_log", exist_ok=True)
writer = SummaryWriter(experiment_dir+"/tf_log")
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
logger.info(f"Batchsize: {batch_size}")
if not pretrain:
logger.info(f"config-{config}, fileds-{total_fieds}, parms-{total_params}, dim-{total_dim}. Dropfields-{drop_list}.")
now=datetime.datetime.now()
time_label = now.strftime("%Y-%m-%d %H:%M:%S")
wandb.init(project="irazor", group=data_name+"-"+model_string_name, tags=str(batch_size), entity="yao-yao", dir="/workspace/wandb/", name=f"{data_name}-BS-{batch_size}-{experiment_index:03d}-{model_string_name}-"+time_label)
# define a metric we are interested in the minimum of
wandb.define_metric("test_log_loss", summary="min")
wandb.define_metric("train_loss", summary="min")
wandb.define_metric("train_l2_loss", summary="min")
# define a metric we are interested in the maximum of
wandb.define_metric("test_auc", summary="max")
wandb.define_metric("train_moving_auc", summary="max")
wandb.log({'batch_size': batch_size,})
run_one_model(model=model, learning_rate=learning_rate, epsilon=1e-8,
decay_rate=None, ep=split_epoch, grda_c=None, grda_mu=None,
learning_rate2=None,decay_rate2=None, retrain_stage=True,
writer=writer, logger=logger
)
writer.close()
logger.info("Done!")
wandb.finish()