-
Notifications
You must be signed in to change notification settings - Fork 4
/
graph.py
129 lines (106 loc) · 5 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import tools
import numpy as np
import torch.nn.functional as F
from scipy.linalg import eigh
from scipy.sparse.linalg import eigsh
from scipy.sparse import csc_matrix, csr_matrix, lil_matrix, coo_matrix, diags
def build_graph(nb_img, nb_node, feats, feats_flow, frame_id, arr_w, arr_h, tau, frame_sigma=300, alpha=0.5, fusion_mode='mean', max_frame=100) :
## first allocate row and column array in order to accelerate
## tmp should be higher if the graph has more edges
tmp = 100000
batch_size = feats.shape[0] // nb_img
## Due to the limit of computational resources, we build multiple nonoverlaping graph in case the video is too long.
frame_treshold = max_frame
nb_graph = nb_img // frame_treshold if nb_img % frame_treshold == 0 else nb_img // frame_treshold + 1
foregrounds = []
for graph_id in range(nb_graph):
edge_start = graph_id * frame_treshold * batch_size
edge_end = min(edge_start + frame_treshold * batch_size, nb_node)
row = np.zeros(batch_size * frame_treshold * tmp, np.int32)
column = np.zeros(batch_size *frame_treshold * tmp, np.int32)
idx = 0
num_frame = min(frame_treshold, (edge_end-edge_start+1)//batch_size)
for batch_id in range(num_frame) :
start = edge_start + batch_size * batch_id
end = start + batch_size
if graph_id == nb_graph - 1 and batch_id == num_frame:
end = edge_end
edge_img = feats[start : end] @ feats[edge_start:edge_end].T
edge_flow = feats_flow[start : end] @ feats_flow[edge_start:edge_end].T
if fusion_mode == 'mean':
edge = (1-alpha) * edge_img + alpha * edge_flow
elif fusion_mode == 'max':
edge = np.maximum(edge_img, edge_flow)
elif fusion_mode == 'min':
edge = np.minimum(edge_img, edge_flow)
elif fusion_mode == 'img':
edge = edge_img
elif fusion_mode == 'flow':
edge = edge_flow
idx_row, idx_column = np.where(edge > tau)
row[idx : idx + len(idx_row)] = idx_row + batch_size * batch_id
column[idx : idx + len(idx_row)] = idx_column
idx += len(idx_row)
if batch_id % 10 == 9 :
print (f"{batch_id + frame_treshold*graph_id} / {nb_img + 1} ...")
row = row[: idx]
column = column[: idx]
## build coo matrix
graph = coo_matrix((np.ones(idx, np.float32), (row, column)), shape=((edge_end-edge_start), (edge_end-edge_start)))
W = graph.tocsr().tolil()
del graph, row, column, edge, edge_img, edge_flow
D = diags(np.asarray(W.sum(axis=1)).flatten())
E = (D - W).tocsr().tocsc()
D = D.tocsr().tocsc()
del W
_, eigenvectors = eigsh(E, 2, D, which='SM', v0=np.ones((edge_end-edge_start), np.float64) * 1/(edge_end - edge_start)**0.5) ## second smallest eigenvector
eigenvectors = eigenvectors[:, 1]
max_eig = eigenvectors.max()
max_abs_eig = np.abs(eigenvectors).max()
eigenvectors = (eigenvectors > eigenvectors.mean())
foreground = eigenvectors == 1 if max_abs_eig == max_eig else eigenvectors == 0
del D, E, eigenvectors
foregrounds.append(foreground)
del foreground
foreground = np.concatenate(foregrounds,axis=0)
return foreground
def build_graph_single_frame(nb_img, feats, feats_flow, frame_id, feat_w, feat_h, tau, alpha=0.5, eps=1e-5, fusion_mode='mean'):
batch_size = feats.shape[0] // nb_img
feats = torch.from_numpy(feats)
feats_flow = torch.from_numpy(feats_flow)
mask = []
for batch_id in range(nb_img):
start = batch_size * batch_id
end = start + batch_size
edge_img = feats[start : end] @ feats[start:end].T
edge_flow = feats_flow[start : end] @ feats_flow[start:end].T
if fusion_mode == 'mean':
edge = alpha * edge_img + alpha * edge_flow
elif fusion_mode == 'max':
edge = np.maximum(edge_img, edge_flow)
elif fusion_mode == 'min':
edge = np.minimum(edge_img, edge_flow)
elif fusion_mode == 'img':
edge = edge_img
elif fusion_mode == 'flow':
edge = edge_flow
A = edge.unsqueeze(0)
## Using lobpcg
A = A > tau
A = A.float()
A = A + eps
d_i = torch.sum(A, dim=2)
D = torch.diag_embed(d_i, dim1=1)
X = (D-A) / (D + eps)
eigval, eigvec = torch.lobpcg(A=D-A, B=D, k=2, largest=False)
second_smallest_vec = eigvec[0,:,1].cpu().numpy()
avg = np.sum(second_smallest_vec) / len(second_smallest_vec)
bipartition = second_smallest_vec > avg
seed = np.argmax(np.abs(second_smallest_vec))
if bipartition[seed] != 1:
bipartition = np.logical_not(bipartition)
bipartition = bipartition.astype(float)
mask.append(bipartition)
mask = np.stack(mask, axis=0)
return mask