-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcunet.py
146 lines (127 loc) · 5.02 KB
/
cunet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import torch.nn as nn
class CausalConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride),
nn.BatchNorm2d(num_features=out_channels),
nn.Dropout2d(0.5),
nn.LeakyReLU(inplace=True)
)
def forward(self, x):
"""
2D Causal convolution.
Args:
x: [B, C, F, T]
Returns:
[B, C, F, T]
"""
return self.conv(x)
class CausalTransConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
self.conv = nn.Sequential(
nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride),
nn.BatchNorm2d(num_features=out_channels),
nn.Dropout2d(0.5),
nn.LeakyReLU(inplace=True)
)
def forward(self, x):
"""
2D Causal convolution.
Args:
x: [B, C, F, T]
Returns:
[B, C, F, T]
"""
return self.conv(x)
class CUNET(nn.Module):
"""
Input: [B, C, F, T]
Output: [B, C, T, F]
"""
def __init__(self):
super(CUNET, self).__init__()
self.conv_block_1 = CausalConvBlock(8, 32, (6, 2), (2, 1))
self.conv_block_2 = CausalConvBlock(32, 32, (7, 2), (2, 1))
self.conv_block_3 = CausalConvBlock(32, 64, (7, 2), (2, 1))
self.conv_block_4 = CausalConvBlock(64, 64, (6, 2), (2, 1))
self.conv_block_5 = CausalConvBlock(64, 96, (6, 2), (2, 1))
self.conv_block_6 = CausalConvBlock(96, 96, (6, 2), (2, 1))
self.conv_block_7 = CausalConvBlock(96, 128, (2, 2), (2, 1))
self.conv_block_8 = CausalConvBlock(128, 256, (2, 2), (1, 1))
self.tran_conv_block_1 = CausalTransConvBlock(256, 256, (2, 2), (1, 1))
self.tran_conv_block_2 = CausalTransConvBlock(256 + 128, 128, (2, 2), (2, 1))
self.tran_conv_block_3 = CausalTransConvBlock(128 + 96, 96, (6, 2), (2, 1))
self.tran_conv_block_4 = CausalTransConvBlock(96 + 96, 96, (6, 2), (2, 1))
self.tran_conv_block_5 = CausalTransConvBlock(96 + 64, 64, (6, 2), (2, 1))
self.tran_conv_block_6 = CausalTransConvBlock(64 + 64, 64, (7, 2), (2, 1))
self.tran_conv_block_7 = CausalTransConvBlock(64 + 32, 32, (7, 2), (2, 1))
self.tran_conv_block_8 = CausalTransConvBlock(32 + 32, 32, (6, 2), (2, 1))
self.last_conv_block = nn.Sequential(
nn.Conv2d(
in_channels=32,
out_channels=8,
kernel_size=1,
stride=1),
nn.BatchNorm2d(num_features=8),
nn.Dropout2d(0.5),
nn.LeakyReLU(inplace=True)) # author of paper said do this
self.dense = nn.Sequential(nn.Linear(514, 514),nn.Sigmoid())
def forward(self, x):
e1 = self.conv_block_1(x)
e2 = self.conv_block_2(e1)
e3 = self.conv_block_3(e2)
e4 = self.conv_block_4(e3)
e5 = self.conv_block_5(e4)
e6 = self.conv_block_6(e5)
e7 = self.conv_block_7(e6)
e8 = self.conv_block_8(e7)
d = self.tran_conv_block_1(e8)
d = self.tran_conv_block_2(torch.cat((d, e7), 1))
d = self.tran_conv_block_3(torch.cat((d, e6), 1))
d = self.tran_conv_block_4(torch.cat((d, e5), 1))
d = self.tran_conv_block_5(torch.cat((d, e4), 1))
d = self.tran_conv_block_6(torch.cat((d, e3), 1))
d = self.tran_conv_block_7(torch.cat((d, e2), 1))
d = self.tran_conv_block_8(torch.cat((d, e1), 1))
d = self.last_conv_block(d)
d = d.permute(0,1,3,2)[:,:,:-8] # author of paper said do this
d = self.dense(d).permute(0,1,3,2)
return d
def l2_norm(s1, s2):
norm = torch.sum(s1 * s2, -1, keepdim=True)
return norm
def si_snr(s1, s2, eps=1e-8):
s1_s2_norm = l2_norm(s1, s2)
s2_s2_norm = l2_norm(s2, s2)
s_target = s1_s2_norm / (s2_s2_norm + eps) * s2
e_nosie = s1 - s_target
target_norm = l2_norm(s_target, s_target)
noise_norm = l2_norm(e_nosie, e_nosie)
snr = 10 * torch.log10(target_norm / (noise_norm + eps) + eps)
return torch.mean(snr)
def snr_loss(inputs, label):
return -(si_snr(inputs, label))
def MAE_loss(inputs, label):
diff = torch.abs(inputs - label)
return diff.sum()/inputs.shape[-1]
if __name__ == '__main__':
layer = CUNET()
K = 8 # zeros padding frame number
x = torch.rand(1, 8, 514, 249) #the 4 seconds original input
print("input shape:", x.shape)
prefix_frames = torch.zeros(1, 8, 514, K) # K zeros prefix frames
y=torch.cat(( x,prefix_frames),3)
print("output shape:",layer(y).shape)
total_num = sum(p.numel() for p in layer.parameters())
print(total_num)