generated from minitorch/Module-0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath_interface.py
152 lines (138 loc) · 5.24 KB
/
math_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import graph_builder
import networkx as nx
import plotly.graph_objects as go
import streamlit as st
from interface.streamlit_utils import render_function
import minitorch
from minitorch import MathTest, MathTestVariable
MyModule = None
minitorch
def render_math_sandbox(use_scalar=False, use_tensor=False):
st.write("## Sandbox for Math Functions")
st.write("Visualization of the mathematical tests run on the underlying code.")
if use_scalar:
one, two, red = MathTestVariable._comp_testing()
else:
one, two, red = MathTest._comp_testing()
f_type = st.selectbox("Function Type", ["One Arg", "Two Arg", "Reduce"])
select = {"One Arg": one, "Two Arg": two, "Reduce": red}
fn = st.selectbox("Function", select[f_type], format_func=lambda a: a[0])
name, _, scalar = fn
if f_type == "One Arg":
st.write("### " + name)
render_function(scalar)
st.write("Function f(x)")
xs = [((x / 1.0) - 50.0 + 1e-5) for x in range(1, 100)]
if use_scalar:
if use_tensor:
ys = [scalar(minitorch.tensor([p]))[0] for p in xs]
else:
ys = [scalar(minitorch.Scalar(p)).data for p in xs]
else:
ys = [scalar(p) for p in xs]
scatter = go.Scatter(mode="lines", x=xs, y=ys)
fig = go.Figure(scatter)
st.write(fig)
if use_scalar:
st.write("Derivative f'(x)")
if use_tensor:
x_var = [minitorch.tensor(x, requires_grad=True) for x in xs]
else:
x_var = [minitorch.Scalar(x) for x in xs]
for x in x_var:
out = scalar(x)
if use_tensor:
out.backward(minitorch.tensor([1.0]))
else:
out.backward()
if use_tensor:
scatter = go.Scatter(mode="lines", x=xs, y=[x.grad[0] for x in x_var])
else:
scatter = go.Scatter(
mode="lines", x=xs, y=[x.derivative for x in x_var]
)
fig = go.Figure(scatter)
st.write(fig)
G = graph_builder.GraphBuilder().run(out)
G.graph["graph"] = {"rankdir": "LR"}
st.graphviz_chart(nx.nx_pydot.to_pydot(G).to_string())
if f_type == "Two Arg":
st.write("### " + name)
render_function(scalar)
st.write("Function f(x, y)")
xs = [((x / 1.0) - 50.0 + 1e-5) for x in range(1, 100)]
ys = [((x / 1.0) - 50.0 + 1e-5) for x in range(1, 100)]
if use_scalar:
if use_tensor:
zs = [
[
scalar(minitorch.tensor([x]), minitorch.tensor([y]))[0]
for x in xs
]
for y in ys
]
else:
zs = [
[scalar(minitorch.Scalar(x), minitorch.Scalar(y)).data for x in xs]
for y in ys
]
else:
zs = [[scalar(x, y) for x in xs] for y in ys]
scatter = go.Surface(x=xs, y=ys, z=zs)
fig = go.Figure(scatter)
st.write(fig)
if use_scalar:
a, b = [], []
for x in xs:
oa, ob = [], []
if use_tensor:
for y in ys:
x1 = minitorch.tensor([x])
y1 = minitorch.tensor([y])
out = scalar(x1, y1)
out.backward(minitorch.tensor([1]))
oa.append((x, y, x1.derivative[0]))
ob.append((x, y, y1.derivative[0]))
else:
for y in ys:
x1 = minitorch.Scalar(x)
y1 = minitorch.Scalar(y)
out = scalar(x1, y1)
out.backward()
oa.append((x, y, x1.derivative))
ob.append((x, y, y1.derivative))
a.append(oa)
b.append(ob)
st.write("Derivative f'_x(x, y)")
scatter = go.Surface(
x=[[c[0] for c in a2] for a2 in a],
y=[[c[1] for c in a2] for a2 in a],
z=[[c[2] for c in a2] for a2 in a],
)
fig = go.Figure(scatter)
st.write(fig)
st.write("Derivative f'_y(x, y)")
scatter = go.Surface(
x=[[c[0] for c in a2] for a2 in b],
y=[[c[1] for c in a2] for a2 in b],
z=[[c[2] for c in a2] for a2 in b],
)
fig = go.Figure(scatter)
st.write(fig)
if f_type == "Reduce":
st.write("### " + name)
render_function(scalar)
xs = [((x / 1.0) - 50.0 + 1e-5) for x in range(1, 100)]
ys = [((x / 1.0) - 50.0 + 1e-5) for x in range(1, 100)]
if use_tensor:
scatter = go.Surface(
x=xs,
y=ys,
z=[[scalar(minitorch.tensor([x, y]))[0] for x in xs] for y in ys],
)
else:
scatter = go.Surface(
x=xs, y=ys, z=[[scalar([x, y]) for x in xs] for y in ys]
)
fig = go.Figure(scatter)
st.write(fig)