Data source: Cityscapes
Image resolution: 2048 x 1024
Bounding box (upper left and bottom right corners):CAR (0, 431), (231, 914)
CAR (279, 430), (442, 519)
CAR (428, 444), (494, 498)
CAR (719, 431), (827, 519)
CAR (789, 405), (874, 493)
CAR (828, 413), (970, 536)
CAR (938, 417), (1021, 497)
CAR (1037, 428), (1069, 457)
CAR (1092, 413), (1196, 509)
PERSON (1455, 419), (1482, 491)
PERSON (1476, 416), (1503, 481)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
pedestrian-and-vehicle-detector-adas-0001 | Bounding box: CAR (720, 439), (821, 505), CAR (824, 424), (967, 525), CAR (945, 420), (1023, 486), CAR (1092, 422), (1188, 501), PERSON (1474, 416), (1499, 481) |
Bounding box: CAR (720, 439), (821, 505), CAR (824, 424), (967, 525), CAR (945, 420), (1023, 486), CAR (1092, 422), (1188, 501), PERSON (1474, 416), (1499, 481) |
Data source: Cityscapes
Image resolution: 2048 x 1024
Bounding boxes (upper left and bottom right corners):
CAR (360, 354), (917, 781)
CAR (906, 402), (1059, 522)
CAR (1175, 366), (1745, 497)
CAR (1245, 372), (1449, 504)
CAR (1300, 311), (1825, 605)
CAR (1599, 314), (2048, 625)
CAR (1697, 315), (2048, 681)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
vehicle-detection-adas-0002 | Bounding box: CAR (384, 363), (921, 754), CAR (909, 407), (1056, 509), CAR (1272, 348), (1742, 592), CAR (1618, 305), (2036, 669) |
Bounding box: CAR (384, 363), (921, 754), CAR (909, 407), (1056, 509), CAR (1272, 348), (1742, 592), CAR (1618, 305), (2036, 669) |
vehicle-detection-adas-binary-0001 | Bounding box: CAR (370, 353), (905, 756), CAR (902, 406), (1048, 509), CAR (1246, 320), (2022, 650) |
Bounding box: CAR (370, 353), (905, 756), CAR (902, 406), (1048, 509), CAR (1246, 320), (2022, 650) |
Data source: Cityscapes
Image resolution: 2048 x 1024
Bounding boxes (upper left and bottom right corners):
CAR (0, 380), (88, 524)
CAR (107, 384), (327, 480)
CAR (506, 375), (623, 458)
CAR (626, 367), (734, 452)
CAR (919, 362), (968, 401)
CAR (1053, 360), (1091, 388)
BIKE (300, 402), (558, 778)
PERSON (310, 171), (536, 749)
PERSON (1779, 268), (1882, 539)
PERSON (1874, 288), (1976, 545)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
person-vehicle-bike-detection-crossroad-0078 | Bounding box: CAR (-4, 400), (80, 515), CAR (114, 392), (326, 480), CAR (547, 382), (645, 457), CAR (627, 379), (724, 444), BIKE (319, 232), (546, 717), PERSON (329, 228), (541, 697), PERSON (1783, 278), (1887, 530), PERSON (1882, 294), (1974, 524) |
Bounding box: CAR (-4, 400), (80, 515), CAR (114, 392), (326, 480), CAR (547, 382), (645, 457), CAR(627, 379), (724, 444), BIKE(319, 232), (546, 717), PERSON (329, 228), (541, 697), PERSON (1783, 278), (1887, 530), PERSON (1882, 294), (1974, 524) |
person-vehicle-bike-detection-crossroad-1016 | Bounding box: CAR (-1, 405), (85, 518), CAR (533, 370), (637, 455), PERSON (319, 213), (554, 722), PERSON (1783, 270), (1884, 536), PERSON (1883, 299), (1975, 513) |
Bounding box: CAR (-1, 405), (85, 518), CAR (533, 370), (637, 455), PERSON (319, 213), (554, 722), PERSON (1783, 270), (1884, 536), PERSON (1883, 299), (1975, 513) |
Data source: GitHub
Image resolution: 799 x 637
Bounding boxes (upper left and bottom right corners):CAR (232, 119), (509, 466)
PLATE (330, 410), (393, 436)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
vehicle-license-plate-detection-barrier-0106 | Bounding box: CAR (232, 119), (509, 466), PLATE (330, 410), (393, 436) |
Bounding box: CAR (232, 119), (509, 466), PLATE (330, 410), (393, 436) |
Data source: Internet
Image resolution: 320 x 320
Bounding boxes (upper left and bottom right corners):PERSON (35, 17), (84, 192)
PERSON (79, 13), (122, 194)
PERSON (211, 78), (273, 279)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
person-detection-asl-0001 | Bounding box: PERSON (35, 17), (84, 192), PERSON (79, 13), (122, 194), PERSON (211, 78), (273, 279) |
Bounding box: PERSON (35, 17), (84, 192), PERSON (79, 13), (122, 194), PERSON (211, 78), (273, 279) |
Data source: Internet
Image resolution: 512 x 512
Bounding boxes (upper left and bottom right corners):PRINGLES (133, 195), (257, 195)
SPRITE (240, 487), (380, 10)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
product-detection-0001 | Bounding box: PRINGLES (130, 178), (275, 493) |
Bounding box: PRINGLES (130, 178), (275, 493) |
Data source: Wider Face
Image resolution: 1024 x 678
Bounding boxes (upper left and bottom right corners):(189, 140) (288, 284)
(616, 45) (704, 213)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
face-detection-adas-0001 | Bounding box: (189, 140) (288, 284), (616, 45) (704, 213) |
Bounding box: (189, 140) (288, 284), (616, 45) (704, 213) |
face-detection-adas-binary-0001 | Bounding box: (186, 137) (289, 277), (616, 53) (706, 211) |
Bounding box: (186, 137) (289, 277), (616, 53) (706, 211) |
face-detection-retail-0004 | Bounding box: (189, 143) (286, 275), (613, 57) (694, 201) |
Bounding box: (189, 143) (286, 275), (613, 57) (694, 201) |
face-detection-retail-0005 | Bounding box: (189, 140) (296, 277), (609, 44) (714, 206) |
Bounding box: (189, 140) (296, 277), (609, 44) (714, 206) |
face-detection-0100 | Bounding box: (190, 142) (290, 282), (615, 46) (703, 210) |
Bounding box: (190, 142) (290, 282), (615, 46) (703, 210) |
face-detection-0102 | Bounding box: (187, 141) (292, 280), (617, 50) (712, 210) |
Bounding box: (187, 141) (292, 280), (617, 50) (712, 210) |
face-detection-0104 | Bounding box: (190, 142) (290, 280), (613, 43) (709, 211) |
Bounding box: (190, 142) (290, 280), (613, 43) (709, 211) |
face-detection-0105 | Bounding box: (188, 141) (286, 279), (612, 45) (704, 204) |
Bounding box: (188, 141) (286, 279), (612, 45) (704, 204) |
Data source: Internet
Image resolution: 1999 x 1333
Bounding boxes (upper left and bottom right corners):(1537, 385) (1792, 1184)
(541, 299) (845, 1161)
(229, 337) (453, 1048)
(0, 293) (193, 1129)
(955, 387) (1169, 1009)
(435, 370) (599, 1019)
(887, 292) (951, 479)
(749, 252) (866, 657)
(515, 317) (599, 580)
(833, 264) (894, 464)
(954, 283) (1020, 476)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
person-detection-retail-0002 | Bounding box: (252, 294) (465, 1048), (966, 361) (1183, 1028), (429, 262) (849, 1048), (695, 283) (872, 839), (421, 315) (612, 986), (1560, 360) (1766, 1204), (885, 283) (944, 503), (771, 276) (868, 574), (0, 314) (180, 941), (1879, 459) (1936, 694), (962, 279) (1023, 499), (1890, 302) (1992, 638) |
Bounding box: (252, 294) (465, 1048), (966, 361) (1183, 1028), (429, 262) (849, 1048), (695, 283) (872, 839), (421, 315) (612, 986), (1560, 360) (1766, 1204), (885, 283) (944, 503), (771, 276) (868, 574), (0, 314) (180, 941), (1879, 459) (1936, 694), (962, 279) (1023, 499), (1890, 302) (1992, 638) |
person-detection-retail-0013 | Bounding box: (1537, 385) (1792, 1184), (541, 299) (845, 1161), (229, 337) (453, 1048), (0, 293) (193, 1129), (956, 387) (1169, 1009), (435, 370) (599, 1019), (887, 292) (951, 479), (749, 252) (866, 657), (515, 317) (599, 580), (833, 264) (894, 464), (954, 283) (1020, 476) |
Bounding box: (1537, 385) (1792, 1184), (541, 299) (845, 1161), (229, 337) (453, 1048), (0, 293) (193, 1129), (956, 387) (1169, 1009), (435, 370) (599, 1019), (887, 292) (951, 479), (749, 252) (866, 657), (515, 317) (599, 580), (833, 264) (894, 464), (954, 283) (1020, 476) |
Data source: Cityscapes
Image resolution: 1999 x 1333
Bounding boxes (upper left and bottom right corners):(629, 310) (934, 811)
(392, 435) (440, 525)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
pedestrian-detection-adas-0002 | Bounding box: (614, 307) (945, 803) |
Bounding box: (614, 307) (945, 803) |
pedestrian-detection-adas-binary-0001 | Bounding box: (629, 310) (934, 811), (392, 435) (440, 525) |
Bounding box (629, 310) (934, 811), (392, 435) (440, 525) |
Data source: Pascal VOC
Image resolution: 500 x 375
Bounding boxes (upper left and bottom right corners):
AEROPLANE (127, 62), (251, 443)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
yolo-v2-ava-0001 | Bounding box: AEROPLANE (127, 62), (251, 443) |
Bounding box: AEROPLANE (127, 62), (251, 443) |
yolo-v2-ava-sparse-35-0001 | Bounding box: AEROPLANE (129, 19), (258, 410) |
Bounding box: AEROPLANE (129, 19), (258, 410) |
yolo-v2-ava-sparse-70-0001 | Bounding box: AEROPLANE (100, 66), (222, 450) |
Bounding box: AEROPLANE (100, 66), (222, 450) |
yolo-v2-tiny-ava-0001 | Bounding box: AEROPLANE (96, 51), (223, 464) |
Bounding box: AEROPLANE (96, 51), (223, 464) |
yolo-v2-tiny-ava-sparse-30-0001 | Bounding box: AEROPLANE (118, -6), (267, 440) |
Bounding box: AEROPLANE (118, -6), (267, 440) |
yolo-v2-tiny-ava-sparse-60-0001 | Bounding box: AEROPLANE (94, 42), (225, 473) |
Bounding box: AEROPLANE (94, 42), (225, 473) |
Data source: sample-videos
Image resolution: 1920 x 1080
Bounding boxes (upper left and bottom right corners) and actions:
sitting (1157,517) (1407,1057)
sitting (452,495) (627,874)
sitting (201,555) (469,1084)
raising hand (874,444) (1052,849)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
person-detection-action-recognition-0006 | Bounding box and action: sitting (1157,517) (1407,1057) sitting (452,495) (627,874) sitting (201,555) (469,1084) raising hand (874,444) (1052,849) |
Bounding box and action: sitting (1157,517) (1407,1057) sitting (452,495) (627,874) sitting (201,555) (469,1084) raising hand (874,444) (1052,849) |
person-detection-action-recognition-0005 | Bounding box and action: sitting (1160,528) (1409,1082) sitting (202,569) (455,1079) standing (453,495) (624,869) raising hand (836,404) (1048,862) |
Bounding box and action: sitting (1160,528) (1409,1082) sitting (202,569) (455,1079) standing (453,495) (624,869) raising hand (836,404) (1048,862) |
person-detection-raisinghand-recognition-0001 | Bounding box and action: sitting (1160,528) (1409,1082) sitting (202,569) (455,1079) sitting (453,495) (624,869) other (836,404) (1048,862) |
Bounding box and action: sitting (1160,528) (1409,1082) sitting (202,569) (455,1079) sitting (453,495) (624,869) other (836,404) (1048,862) |
Data source: Internet
Image resolution: 1920 x 1080
Bounding boxes (upper left and bottom right corners) and actions:
standing (186,15) (276,224)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
person-detection-action-recognition-teacher-0002 | Bounding box and action: standing (286,84) (357,283) standing (0,81) (101,281) standing (186,15) (276,224) |
Bounding box and action: standing (286,84) (357,283) standing (0,81) (101,281) standing (186,15) (276,224) |
Data source: GitHub
Image resolution: 62 x 62
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
age-gender-recognition-retail-0013 | Female, 25.19 | Female, 25.19 |
Data source: GitHub
Image resolution: 62 x 62
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
age-gender-recognition-retail-0013 | Male, 43.43 | Male, 43.43 |
Data source: GitHub
Image resolution: 62 x 62
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
age-gender-recognition-retail-0013 | Male, 28.49 | Male, 28.49 |
Data source: VGGFace2
Image resolution: 48 x 48
Face landmarks:
EYE (17, 18),
EYE (35, 21),
NOSE (24, 27),
LIP CORNER (15, 34),
LIP CORNER (28, 36)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
landmarks-regression-retail-0009 | Face landmarks: EYE (17, 18), EYE (35, 21), NOSE (24, 27), LIP CORNER (15, 34), LIP CORNER (28, 36) |
Face landmarks: EYE (17, 18), EYE (35, 21), NOSE (24, 27), LIP CORNER (15, 34), LIP CORNER (28, 36) |
Data source: Internet
Image resolution: 60 x 60
Face landmarks:
LEFT EYE (17, 22), (9, 22),
RIGHT EYE (30, 21), (39, 20),
NOSE (21, 33), (23, 37), (17, 35), (30, 34),
MOUTH (17, 44), (34, 42), (23, 41), (24, 48),
LEFT EYEBROW (6, 17), (11, 15), (18, 17),
RIGHT EYEBROW (27, 15), (35, 12), (43, 14),
FACE CONTOUR (5, 22), (5, 28), (6, 33), (8, 38), (10, 43), (12, 48), (16, 52), (20, 56), (25, 57), (33, 56), (39, 53), (44, 48), (49, 43), (51, 38), (52, 31), (53, 25), (53, 18)
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
facial-landmarks-35-adas-0002 | Face landmarks: LEFT EYE (17, 22), (9, 22), RIGHT EYE (30, 21), (39, 20), NOSE (21, 33), (23, 37), (17, 35), (30, 34), MOUTH (17, 44), (34, 42), (23, 41), (24, 48), LEFT EYEBROW (6, 17), (11, 15), (18, 17), RIGHT EYEBROW (27, 15), (35, 12), (43, 14), FACE CONTOUR (5, 22), (5, 28), (6, 33), (8, 38), (10, 43), (12, 48), (16, 52), (20, 56), (25, 57), (33, 56), (39, 53), (44, 48), (49, 43), (51, 38), (52, 31), (53, 25), (53, 18) |
Face landmarks: LEFT EYE (17, 22), (9, 22), RIGHT EYE (30, 21), (39, 20), NOSE (21, 33), (23, 37), (17, 35), (30, 34), MOUTH (17, 44), (34, 42), (23, 41), (24, 48), LEFT EYEBROW (6, 17), (11, 15), (18, 17), RIGHT EYEBROW (27, 15), (35, 12), (43, 14), FACE CONTOUR (5, 22), (5, 28), (6, 33), (8, 38), (10, 43), (12, 48), (16, 52), (20, 56), (25, 57), (33, 56), (39, 53), (44, 48), (49, 43), (51, 38), (52, 31), (53, 25), (53, 18) |
Data source: Cityscapes
Image resolution: 80 x 160
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
person-attributes-recognition-crossroad-0230 |
Data source: Cityscapes
Image resolution: 80 x 160
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
person-attributes-recognition-crossroad-0230 |
Data source: BKHD
Image resolution: 60 x 60
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
head-pose-estimation-adas-0001 |
Data source: BKHD
Image resolution: 60 x 60
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
gaze-estimation-adas-0002 |
Data source: GitHub
Image resolution: 24 x 94
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
license-plate-recognition-barrier-0001 | <Beijing>FA9512 | <Beijing>FA9512 |
Data source: GitHub
Image resolution: 720 x 480
Processed images are identical.
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
single-image-super-resolution-1032 | ||
single-image-super-resolution-1033 |
Data source: MS COCO
Image resolution: 640 x 425
Processed images are identical.
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
human-pose-estimation-0001 |
Data source: Cityscapes
Image resolution: 2048 x 1024
Segmented images are identical.
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
semantic-segmentation-adas-0001 |
Color map:
Data source: GitHub
Image resolution: 640 x 365
Segmented images are identical.
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
road-segmentation-adas-0001 |
Color map:
Data source: CamVid
Image resolution: 960 x 720
Segmented images are identical.
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
unet-camvid-onnx-0001 | ||
icnet-camvid-ava-0001 | ||
icnet-camvid-ava-sparse-30-0001 | ||
icnet-camvid-ava-sparse-60-0001 |
Color map:
Data source: LFW
Image resolution: 250 x 250
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
face-reidentification-retail-0095 | -0.1658423 -0.5230426 -1.4679441 0.0983598 ... 0.8537527 0.8713884 -0.8769233 0.6840097 Full tensor |
-0.1658423 -0.5230426 -1.4679441 0.0983598 ... 0.8537527 0.8713884 -0.8769233 0.6840097 Full tensor |
Data source: GitHub
Image resolution: 960 x 720
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
action-recognition-0001-encoder | 0.0794002 0.0583136 0.0020747 0.0903931 ... 0.0785143 0.0922345 0.0033597 0.3115494 Full tensor |
0.0794002 0.0583136 0.0020747 0.0903931 ... 0.0785143 0.0922345 0.0033597 0.3115494 Full tensor |
Data source: GitHub
Image resolution: 1922 x 1080
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
driver-action-recognition-adas-0002-encoder | -0.0142664 -0.0064784 -0.0334583 -0.0108943 ... -0.2324419 0.2686763 0.0168234 0.0029897 Full tensor |
-0.0142664 -0.0064784 -0.0334583 -0.0108943 ... -0.2324419 0.2686763 0.0168234 0.0029897 Full tensor |
Data source: Internet
Image resolution: 1922 x 1080
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
image-retrieval-0001 | 0.1158277 -0.0189930 0.0530676 0.0290345 ... 0.2057585 -0.0367919 -0.0067885 -0.0031499 Full tensor |
0.1158277 -0.0189930 0.0530676 0.0290345 ... 0.2057585 -0.0367919 -0.0067885 -0.0031499 Full tensor |
Data source: output tensor of the action-recognition-0001-encoder model
0.0154800 0.3712009 0.4007360 0.0830761
...
0.1126685 0.1257046 0.1392988 0.5075323
0.0785143 0.0922345 0.0033597 0.3115494
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
action-recognition-0001-decoder | 9.0227661 tying bow tie 7.5208311 tying tie 4.8729849 sign language interpreting 4.3601480 answering questions 4.2990689 tying knot (not on a tie) 4.0868192 whistling 3.9643712 playing harmonica 3.7044604 stretching arm 3.5711651 strumming guitar 3.5514102 playing clarinet |
9.0227661 tying bow tie 7.5208311 tying tie 4.8729849 sign language interpreting 4.3601480 answering questions 4.2990689 tying knot (not on a tie) 4.0868192 whistling 3.9643712 playing harmonica 3.7044604 stretching arm 3.5711651 strumming guitar 3.5514102 playing clarinet |
Data source: output tensor of the driver-action-recognition-adas-0002-encoder model
-0.0555940 -0.0013968 0.0001638 -0.0007524
...
-0.0093990 -0.0028726 0.0074722 0.0303789
-0.2324419 0.2686763 0.0168234 0.0029897
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
driver-action-recognition-adas-0002-decoder | 4.3797836 texting by right hand 4.1073933 talking on the phone by right hand 1.6492549 drinking 1.2682760 texting by left hand 0.3225771 reaching behind -1.6658649 safe driving -3.3440599 doing hair or making up -4.6270852 operating the radio -5.3927083 talking on the phone by left hand |
4.3797836 texting by right hand 4.1073933 talking on the phone by right hand 1.6492549 drinking 1.2682760 texting by left hand 0.3225771 reaching behind -1.6658649 safe driving -3.3440599 doing hair or making up -4.6270852 operating the radio -5.3927083 talking on the phone by left hand |
Data source: MS COCO
Image resolution: 640 x 480
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
instance-segmentation-security-0083 |
Data source: MS COCO
Image resolution: 640 x 640
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
instance-segmentation-security-0050 | ||
instance-segmentation-security-1025 |
Data source: MS COCO
Image resolution: 640 x 427
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
instance-segmentation-security-0010 |
Color map:
Data source: ImageNet
Image resolution: 709 x 510
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
resnet18-xnor-binary-onnx-0001 | 6.5452480 Granny Smith 4.1318626 fig 3.5715680 bell pepper 3.1780813 saltshaker, salt shaker 3.1212788 hair slide |
6.5452480 Granny Smith 4.1318626 fig 3.5715680 bell pepper 3.1780813 saltshaker, salt shaker 3.1212788 hair slide |
Data source: ImageNet
Image resolution: 500 x 500
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
resnet18-xnor-binary-onnx-0001 | 9.1701651 junco, snowbird 5.4874449 chickadee 0.4869275 jay 0.3719085 indigo bunting, indigo finch, indigo bird, Passerina cyanea -1.1992515 brambling, Fringilla montifringilla |
9.1701651 junco, snowbird 5.4874449 chickadee 0.4869275 jay 0.3719085 indigo bunting, indigo finch, indigo bird, Passerina cyanea -1.1992515 brambling, Fringilla montifringilla |
Data source: ImageNet
Image resolution: 333 x 500
Model | Python (latency mode, implementation) | Python (throughput mode, implementation) |
---|---|---|
resnet18-xnor-binary-onnx-0001 | 4.7719054 lifeboat 1.7933186 drilling platform, offshore rig 0.1516396 fireboat 0.0121927 amphibian, amphibious vehicle -0.2893910 pirate, pirate ship |
4.7719054 lifeboat 1.7933186 drilling platform, offshore rig 0.1516396 fireboat 0.0121927 amphibian, amphibious vehicle -0.2893910 pirate, pirate ship |