-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolor_transfer.py
227 lines (173 loc) · 5.99 KB
/
color_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# These codes can used to generate fake background for the original image during training
import numpy as np
import cv2
import matplotlib.pyplot as plt
import random
import linecache
import matplotlib.pyplot as plt
from PIL import Image, ImageEnhance
import random
import torch
def color_transfer(Is,Ms): # [h,w,c]
colorfunction=random.choice([color,bright,color_enhancement])
It = colorfunction(Is, Ms)
return It
def color(Is,Ms):
txtname = './dataset/real_dataset_for_finetune/train.txt'
count = len(open(txtname, 'r').readlines())
I2num = random.randrange(1, count, 1)
data = linecache.getline(txtname, I2num)
name = data.split('\n')[0]
It = cv2.imread('./dataset/real_dataset_for_finetune/real/' + name)
# BGR->LAB
Is = Is.float()
LabIs = Is.permute(2,0,1)/255
LabIs = BGR2RGB(LabIs)
LabIs = rgb2lab(LabIs)
It = It.astype(np.float32)/255
It = torch.from_numpy(It)
It = It.permute(2,0,1)
It = BGR2RGB(It)
It = rgb2lab(It)
# mean、std
Is_means = torch.zeros([3,1])
It_means = torch.zeros([3,1])
Is_stdevs = torch.zeros([3,1])
It_stdevs = torch.zeros([3,1])
LabIs = LabIs / 255.
It = It / 255.
for i in range(3):
Is_means[i,:] += torch.mean(LabIs[i, :, :])
It_means[i,:] += torch.mean(It[i, :, :])
Is_stdevs[i,:] += torch.std(LabIs[i, :, :])
It_stdevs[i,:] += torch.std(It[i, :, :])
thresh = [a / b for a, b in zip(It_stdevs, Is_stdevs)]
thresh = It_stdevs / Is_stdevs
thresh = torch.stack([thresh[0,:], thresh[2,:], thresh[1,:]], dim = 0)
LabIt = torch.zeros_like(It)
for i in range(3):
LabIt[i,:,:] = thresh[i,:]*(LabIs[i,:,:]-Is_means[i,:]) + It_means[i,:]
# # [0-255]
LabIt = (LabIt * 255.)
LabIt *= (LabIt > 0)
LabIt = (LabIt * (LabIt <= 255) + 255 * (LabIt > 255))
It = LabIt
It = lab2rgb(It)
It = RGB2BGR(It)
It = It.permute(1,2,0)
It = It*255
# show
It = Is * (Ms / 255) + It * (1 - Ms / 255)
return It
def bright(Is,Ms):
It = torch.zeros_like(Is)
a = random.uniform(-100, 200)
It = Is + a
It = torch.clamp(It,0,255)
It = Is * (Ms / 255) + It * (1 - Ms / 255)
return It
def color_enhancement(Is,Ms):
It = MSRCR(
Is,
[15, 80, 200],
5.0, #G
25.0, #b
125.0, #alpha
46.0 #beta
)
It = Is * (Ms / 255) + It * (1 - Ms / 255)
return It
#########################################################################
# color enhancement code, refer from https://blog.csdn.net/weixin_38285131/article/details/88097771
def singleScaleRetinex(img,sigma):
retinex = torch.log10(img) - torch.log10(torch.from_numpy(cv2.GaussianBlur(img.numpy(), (0, 0), sigma)))
return retinex
def multiScaleRetinex(img, sigma_list):
retinex = torch.zeros_like(img)
for sigma in sigma_list:
retinex += singleScaleRetinex(img, sigma)
retinex = retinex / len(sigma_list)
return retinex
def colorRestoration(img, alpha, beta):
img_sum = torch.sum(img, axis=2, keepdims=True)
color_restoration = beta * (torch.log10(alpha * img) - torch.log10(img_sum))
return color_restoration
def MSRCR(img, sigma_list, G, b, alpha, beta):
img = img.float()+1.0
img_retinex = multiScaleRetinex(img, sigma_list)
img_color = colorRestoration(img, alpha, beta)
img_msrcr = G * (img_retinex * img_color + b)
img_msrcr *= (img_msrcr > 0)
img_msrcr = (img_msrcr * (img_msrcr <= 255) + 255 * (img_msrcr > 255))
return img_msrcr
#########################################################################
# color rgb2lab code , refer from https://blog.csdn.net/Ly_MinSheng/article/details/110231726
def BGR2RGB(img):
return torch.stack([img[2,:,:], img[1,:,:], img[0,:,:]], dim = 0)
def RGB2BGR(img):
return torch.stack([img[2,:,:], img[1,:,:], img[0,:,:]], dim = 0)
def F(X):
FX = 7.787*X + 0.137931
index = X > 0.008856
FX[index] = torch.pow(X[index],1.0/3.0)
return FX
def anti_F(X):
tFX = (X - 0.137931) / 7.787
index = X > 0.206893
tFX[index] = torch.pow(X[index],3)
return tFX
def gamma(r):
r2 = r / 12.92
index = r > 0.04045
r2[index] = torch.pow((r[index] + 0.055) / 1.055, 2.4)
return r2
def anti_g(r):
r2 = r*12.92
index = r > 0.0031308072830676845
r2[index] = torch.pow(r[index], 1.0/2.4)*1.055 - 0.055
return r2
def rgb2lab(img):
r = img[0,:,:]
g = img[1,:,:]
b = img[2,:,:]
r = gamma(r)
g = gamma(g)
b = gamma(b)
X = r * 0.436052025 + g * 0.385081593 + b * 0.143087414
Y = r * 0.222491598 + g * 0.716886060 + b * 0.060621486
Z = r * 0.013929122 + g * 0.097097002 + b * 0.714185470
X = X / 0.964221
Z = Z / 0.825211
F_X = F(X)
F_Y = F(Y)
F_Z = F(Z)
L = 116*F_Y - 16.0
a = 500*(F_X-F_Y)
b = 200*(F_Y-F_Z)
return torch.stack([L, a, b], dim = 0)
def lab2rgb(Lab):
fY = (Lab[0,:,:] + 16.0) / 116.0
fX = Lab[1,:,:] / 500.0 + fY
fZ = fY - Lab[2,:,:] / 200.0
x = anti_F(fX)
y = anti_F(fY)
z = anti_F(fZ)
x = x * 0.964221
z = z * 0.825211
#
r = 3.13405134*x - 1.61702771*y - 0.49065221*z
g = -0.97876273*x + 1.91614223*y + 0.03344963*z
b = 0.07194258*x - 0.22897118*y + 1.40521831*z
#
r = anti_g(r)
g = anti_g(g)
b = anti_g(b)
return torch.stack([r, g, b], dim = 0).clamp(0.0,1.0)
if __name__ == '__main__':
I1 = cv2.imread("dataset/real_dataset_for_finetune/real/1803151818-00000003.png")
M1 = cv2.imread("dataset/real_dataset_for_finetune/alpha/1803151818-00000003.png")
I1 = torch.from_numpy(I1)
M1 = torch.from_numpy(M1)
It = color_transfer(I1, M1)
It = np.array(It, dtype='uint8')
cv2.imwrite("./change.png",It)