forked from smduan/Fed-CCVR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_process.py
86 lines (66 loc) · 2.5 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torchvision
from torchvision.utils import save_image
import torchvision.transforms as transforms
import os
import pandas as pd
from conf import conf
def save_img(loader, is_train, target_dir):
"""
:param loader: 数据加载器
:param is_train: 是否训练数据
:param target_dir: 保存数据目录
:return:
"""
#构造数据目录和索引文件保存地址
if is_train:
target_dir = os.path.join(target_dir, 'train')
index_file = os.path.join(target_dir,'train.csv')
else:
target_dir = os.path.join(target_dir, 'test')
index_file = os.path.join(target_dir, 'test.csv')
os.makedirs(target_dir, exist_ok=True)
num = 0
#保存图片文件名
index_fname = []
#保存标签
index_label = []
for _, batch_data in enumerate(loader):
data, label = batch_data
for d,l in zip(data, label):
#构造图片保存目录
result_dir = os.path.join(target_dir, str(l.item()))
if not os.path.exists(result_dir):
os.makedirs(result_dir,exist_ok=True)
#构造图片保存文件
file = os.path.join(result_dir, "{0}-{1}.png".format(l.item(), num))
index_fname.append(file)
index_label.append(l.item())
#保存图片
save_image(d.data, file)
num += 1
#保存索引
index = pd.DataFrame({
conf["file_column"]:index_fname,
conf["label_column"]:index_label
})
index.to_csv(index_file, index=False)
def process_cifar10(data_dir, target_dir):
"""
:param data_dir: 数据目录
:param target_dir: 处理后目标目录
:return:
"""
transform = transforms.Compose(
[transforms.Resize((32, 32)), transforms.ToTensor()])
trainset = torchvision.datasets.CIFAR10(root=data_dir, train=True,
download=True, transform=transform)
testset = torchvision.datasets.CIFAR10(root=data_dir, train=False,
download=False, transform=transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=64,shuffle=True)
test_loader = torch.utils.data.DataLoader(testset, batch_size=64,shuffle=True)
save_img(train_loader, is_train=True, target_dir=target_dir)
save_img(test_loader,is_train=False,target_dir=target_dir)
print("cifar10 process done !")
if __name__ == "__main__":
process_cifar10('./data','./data/cifar10')