-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathexample.py
113 lines (96 loc) · 3.98 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import sys
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from collections import OrderedDict
import torch
import torchvision.utils as vutils
import utils
from models import DGP
sys.path.append("./")
# Arguments for demo
def add_example_parser(parser):
parser.add_argument(
'--image_path', type=str, default='',
help='Path of the image to be processed (default: %(default)s)')
parser.add_argument(
'--class', type=int, default=-1,
help='class index of the image (default: %(default)s)')
parser.add_argument(
'--image_path2', type=str, default='',
help='Path of the 2nd image to be processed, used in "morphing" mode (default: %(default)s)')
parser.add_argument(
'--class2', type=int, default=-1,
help='class index of the 2nd image, used in "morphing" mode (default: %(default)s)')
return parser
# prepare arguments and save in config
parser = utils.prepare_parser()
parser = utils.add_dgp_parser(parser)
parser = add_example_parser(parser)
config = vars(parser.parse_args())
utils.dgp_update_config(config)
# set random seed
utils.seed_rng(config['seed'])
if not os.path.exists('{}/images'.format(config['exp_path'])):
os.makedirs('{}/images'.format(config['exp_path']))
if not os.path.exists('{}/images_sheet'.format(config['exp_path'])):
os.makedirs('{}/images_sheet'.format(config['exp_path']))
# initialize DGP model
dgp = DGP(config)
# prepare the target image
img = utils.get_img(config['image_path'], config['resolution']).cuda()
category = torch.Tensor([config['class']]).long().cuda()
dgp.set_target(img, category, config['image_path'])
# prepare initial latent vector
dgp.select_z(select_y=True if config['class'] < 0 else False)
# start reconstruction
loss_dict = dgp.run()
if config['dgp_mode'] == 'category_transfer':
save_imgs = img.clone().cpu()
for i in range(151, 294): # dog & cat
# for i in range(7, 25): # bird
with torch.no_grad():
x = dgp.G(dgp.z, dgp.G.shared(dgp.y.fill_(i)))
utils.save_img(
x[0],
'%s/images/%s_class%d.jpg' % (config['exp_path'], dgp.img_name, i))
save_imgs = torch.cat((save_imgs, x.cpu()), dim=0)
vutils.save_image(
save_imgs,
'%s/images_sheet/%s_categories.jpg' % (config['exp_path'], dgp.img_name),
nrow=int(save_imgs.size(0)**0.5),
normalize=True)
elif config['dgp_mode'] == 'morphing':
dgp2 = DGP(config)
dgp_interp = DGP(config)
img2 = utils.get_img(config['image_path2'], config['resolution']).cuda()
category2 = torch.Tensor([config['class2']]).long().cuda()
dgp2.set_target(img2, category2, config['image_path2'])
dgp2.select_z(select_y=True if config['class2'] < 0 else False)
loss_dict = dgp2.run()
weight1 = dgp.G.state_dict()
weight2 = dgp2.G.state_dict()
weight_interp = OrderedDict()
save_imgs = []
with torch.no_grad():
for i in range(11):
alpha = i / 10
# interpolate between both latent vector and generator weight
z_interp = alpha * dgp.z + (1 - alpha) * dgp2.z
y_interp = alpha * dgp.G.shared(dgp.y) + (1 - alpha) * dgp2.G.shared(dgp2.y)
for k, w1 in weight1.items():
w2 = weight2[k]
weight_interp[k] = alpha * w1 + (1 - alpha) * w2
dgp_interp.G.load_state_dict(weight_interp)
x_interp = dgp_interp.G(z_interp, y_interp)
save_imgs.append(x_interp.cpu())
# save images
save_path = '%s/images/%s_%s' % (config['exp_path'], dgp.img_name, dgp2.img_name)
if not os.path.exists(save_path):
os.makedirs(save_path)
utils.save_img(x_interp[0], '%s/%03d.jpg' % (save_path, i + 1))
save_imgs = torch.cat(save_imgs, 0)
vutils.save_image(
save_imgs,
'%s/images_sheet/morphing_%s_%s.jpg' % (config['exp_path'], dgp.img_name, dgp2.img_name),
nrow=int(save_imgs.size(0)**0.5),
normalize=True)