-
Notifications
You must be signed in to change notification settings - Fork 1
/
chem_loader.py
572 lines (501 loc) · 19.7 KB
/
chem_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import os
import pickle
from itertools import repeat, chain
import torch
from torch.utils import data
import pandas as pd
import numpy as np
import networkx as nx
from rdkit import Chem
from rdkit.Chem import Descriptors
from rdkit.Chem import AllChem
from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect
from torch_geometric.data import Data
from torch_geometric.data import InMemoryDataset
from tqdm import tqdm
# allowable node and edge features
allowable_features = {
"possible_atomic_num_list": list(range(1, 119)),
"possible_formal_charge_list": [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5],
"possible_chirality_list": [
Chem.rdchem.ChiralType.CHI_UNSPECIFIED,
Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW,
Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW,
Chem.rdchem.ChiralType.CHI_OTHER,
],
"possible_hybridization_list": [
Chem.rdchem.HybridizationType.S,
Chem.rdchem.HybridizationType.SP,
Chem.rdchem.HybridizationType.SP2,
Chem.rdchem.HybridizationType.SP3,
Chem.rdchem.HybridizationType.SP3D,
Chem.rdchem.HybridizationType.SP3D2,
Chem.rdchem.HybridizationType.UNSPECIFIED,
],
"possible_numH_list": [0, 1, 2, 3, 4, 5, 6, 7, 8],
"possible_implicit_valence_list": [0, 1, 2, 3, 4, 5, 6],
"possible_degree_list": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
"possible_bonds": [
Chem.rdchem.BondType.SINGLE,
Chem.rdchem.BondType.DOUBLE,
Chem.rdchem.BondType.TRIPLE,
Chem.rdchem.BondType.AROMATIC,
],
"possible_aromatic_list": [True, False],
"possible_bond_dirs": [ # only for double bond stereo information
Chem.rdchem.BondDir.NONE,
Chem.rdchem.BondDir.ENDUPRIGHT,
Chem.rdchem.BondDir.ENDDOWNRIGHT,
],
}
def mol_to_graph_data_obj_simple(mol):
"""
Converts rdkit mol object to graph Data object required by the pytorch
geometric package. NB: Uses simplified atom and bond features, and represent
as indices
:param mol: rdkit mol object
:return: graph data object with the attributes: x, edge_index, edge_attr
"""
# atoms
# num_atom_features = 6 # atom type, chirality tag
atom_features_list = []
for atom in mol.GetAtoms():
atom_feature = (
[allowable_features["possible_atomic_num_list"].index(atom.GetAtomicNum())]
+ [allowable_features["possible_degree_list"].index(atom.GetDegree())]
+ [
allowable_features["possible_formal_charge_list"].index(
atom.GetFormalCharge()
)
]
+ [
allowable_features["possible_hybridization_list"].index(
atom.GetHybridization()
)
]
+ [allowable_features["possible_aromatic_list"].index(atom.GetIsAromatic())]
+ [allowable_features["possible_chirality_list"].index(atom.GetChiralTag())]
)
atom_features_list.append(atom_feature)
x = torch.tensor(np.array(atom_features_list), dtype=torch.long)
# bonds
num_bond_features = 2 # bond type, bond direction
if len(mol.GetBonds()) > 0: # mol has bonds
edges_list = []
edge_features_list = []
for bond in mol.GetBonds():
i = bond.GetBeginAtomIdx()
j = bond.GetEndAtomIdx()
edge_feature = [
allowable_features["possible_bonds"].index(bond.GetBondType())
] + [allowable_features["possible_bond_dirs"].index(bond.GetBondDir())]
edges_list.append((i, j))
edge_features_list.append(edge_feature)
edges_list.append((j, i))
edge_features_list.append(edge_feature)
# data.edge_index: Graph connectivity in COO format with shape [2, num_edges]
edge_index = torch.tensor(np.array(edges_list).T, dtype=torch.long)
# data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features]
edge_attr = torch.tensor(np.array(edge_features_list), dtype=torch.long)
else: # mol has no bonds
edge_index = torch.empty((2, 0), dtype=torch.long)
edge_attr = torch.empty((0, num_bond_features), dtype=torch.long)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
return data
def graph_data_obj_to_mol_simple(data_x, data_edge_index, data_edge_attr):
"""
Convert pytorch geometric data obj to rdkit mol object. NB: Uses simplified
atom and bond features, and represent as indices.
:param: data_x:
:param: data_edge_index:
:param: data_edge_attr
:return:
"""
mol = Chem.RWMol()
# atoms
atom_features = data_x.cpu().numpy()
num_atoms = atom_features.shape[0]
for i in range(num_atoms):
atomic_num_idx, chirality_tag_idx = atom_features[i]
atomic_num = allowable_features["possible_atomic_num_list"][atomic_num_idx]
chirality_tag = allowable_features["possible_chirality_list"][chirality_tag_idx]
atom = Chem.Atom(atomic_num)
atom.SetChiralTag(chirality_tag)
mol.AddAtom(atom)
# bonds
edge_index = data_edge_index.cpu().numpy()
edge_attr = data_edge_attr.cpu().numpy()
num_bonds = edge_index.shape[1]
for j in range(0, num_bonds, 2):
begin_idx = int(edge_index[0, j])
end_idx = int(edge_index[1, j])
bond_type_idx, bond_dir_idx = edge_attr[j]
bond_type = allowable_features["possible_bonds"][bond_type_idx]
bond_dir = allowable_features["possible_bond_dirs"][bond_dir_idx]
mol.AddBond(begin_idx, end_idx, bond_type)
# set bond direction
new_bond = mol.GetBondBetweenAtoms(begin_idx, end_idx)
new_bond.SetBondDir(bond_dir)
# Chem.SanitizeMol(mol) # fails for COC1=CC2=C(NC(=N2)[S@@](=O)CC2=NC=C(
# C)C(OC)=C2C)C=C1, when aromatic bond is possible
# when we do not have aromatic bonds
# Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_KEKULIZE)
return mol
def graph_data_obj_to_nx_simple(data):
"""
Converts graph Data object required by the pytorch geometric package to
network x data object. NB: Uses simplified atom and bond features,
and represent as indices. NB: possible issues with recapitulating relative
stereochemistry since the edges in the nx object are unordered.
:param data: pytorch geometric Data object
:return: network x object
"""
G = nx.Graph()
# atoms
atom_features = data.x.cpu().numpy()
num_atoms = atom_features.shape[0]
for i in range(num_atoms):
atom_type, degree, formal_charge, hybrid, aromatic, chirality = atom_features[i]
G.add_node(
i,
atom_type=atom_type,
degree=degree,
formal_charge=formal_charge,
hybrid=hybrid,
aromatic=aromatic,
chirality=chirality,
)
# bonds
edge_index = data.edge_index.cpu().numpy()
edge_attr = data.edge_attr.cpu().numpy()
num_bonds = edge_index.shape[1]
for j in range(0, num_bonds, 2):
begin_idx = int(edge_index[0, j])
end_idx = int(edge_index[1, j])
bond_type_idx, bond_dir_idx = edge_attr[j]
if not G.has_edge(begin_idx, end_idx):
G.add_edge(
begin_idx,
end_idx,
bond_type_idx=bond_type_idx,
bond_dir_idx=bond_dir_idx,
)
return G
def nx_to_graph_data_obj_simple(G):
"""
Converts nx graph to pytorch geometric Data object. Assume node indices
are numbered from 0 to num_nodes - 1. NB: Uses simplified atom and bond
features, and represent as indices. NB: possible issues with
recapitulating relative stereochemistry since the edges in the nx
object are unordered.
:param G: nx graph obj
:return: pytorch geometric Data object
"""
# atoms
# num_atom_features = 2 # atom type, chirality tag
atom_features_list = []
for _, node in G.nodes(data=True):
atom_feature = [
node["atom_type"],
node["degree"],
node["formal_charge"],
node["hybrid"],
node["aromatic"],
node["chirality"],
]
atom_features_list.append(atom_feature)
x = torch.tensor(np.array(atom_features_list), dtype=torch.long)
# bonds
num_bond_features = 2 # bond type, bond direction
if len(G.edges()) > 0: # mol has bonds
edges_list = []
edge_features_list = []
for i, j, edge in G.edges(data=True):
edge_feature = [edge["bond_type_idx"], edge["bond_dir_idx"]]
edges_list.append((i, j))
edge_features_list.append(edge_feature)
edges_list.append((j, i))
edge_features_list.append(edge_feature)
# data.edge_index: Graph connectivity in COO format with shape [2, num_edges]
edge_index = torch.tensor(np.array(edges_list).T, dtype=torch.long)
# data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features]
edge_attr = torch.tensor(np.array(edge_features_list), dtype=torch.long)
else: # mol has no bonds
edge_index = torch.empty((2, 0), dtype=torch.long)
edge_attr = torch.empty((0, num_bond_features), dtype=torch.long)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
return data
def get_gasteiger_partial_charges(mol, n_iter=12):
"""
Calculates list of gasteiger partial charges for each atom in mol object.
:param mol: rdkit mol object
:param n_iter: number of iterations. Default 12
:return: list of computed partial charges for each atom.
"""
Chem.rdPartialCharges.ComputeGasteigerCharges(
mol, nIter=n_iter, throwOnParamFailure=True
)
partial_charges = [float(a.GetProp("_GasteigerCharge")) for a in mol.GetAtoms()]
return partial_charges
def create_standardized_mol_id(smiles):
"""
:param smiles:
:return: inchi
"""
if check_smiles_validity(smiles):
# remove stereochemistry
smiles = AllChem.MolToSmiles(
AllChem.MolFromSmiles(smiles), isomericSmiles=False
)
mol = AllChem.MolFromSmiles(smiles)
if mol is not None: # to catch weird issue with a specific mol
if "." in smiles: # if multiple species, pick largest molecule
mol_species_list = split_rdkit_mol_obj(mol)
largest_mol = get_largest_mol(mol_species_list)
inchi = AllChem.MolToInchi(largest_mol)
else:
inchi = AllChem.MolToInchi(mol)
return inchi
else:
return
else:
return
class MoleculeDataset(InMemoryDataset):
def __init__(
self,
root,
# data = None,
# slices = None,
transform=None,
pre_transform=None,
pre_filter=None,
dataset="l1000",
empty=False,
):
"""
Adapted from qm9.py. Disabled the download functionality
:param root: directory of the dataset, containing a raw and processed
dir. The raw dir should contain the file containing the smiles, and the
processed dir can either empty or a previously processed file
:param dataset: name of the dataset. Currently only implemented for
zinc250k, chembl_with_labels, tox21, hiv, bace, bbbp, clintox, esol,
freesolv, lipophilicity, muv, pcba, sider, toxcast
:param empty: if True, then will not load any data obj. For
initializing empty dataset
"""
self.dataset = dataset
self.root = root
super(MoleculeDataset, self).__init__(
root, transform, pre_transform, pre_filter
)
self.transform, self.pre_transform, self.pre_filter = (
transform,
pre_transform,
pre_filter,
)
if not empty:
self.data, self.slices = torch.load(self.processed_paths[0])
def get(self, idx):
data = Data()
for key in self.data.keys:
item, slices = self.data[key], self.slices[key]
s = list(repeat(slice(None), item.dim()))
s[data.__cat_dim__(key, item)] = slice(slices[idx], slices[idx + 1])
data[key] = item[s]
return data
@property
def raw_file_names(self):
file_name_list = os.listdir(self.raw_dir)
# assert len(file_name_list) == 1 # currently assume we have a
# # single raw file
return file_name_list
@property
def processed_file_names(self):
return "geometric_data_processed.pt"
def download(self):
raise NotImplementedError(
"Must indicate valid location of raw data. " "No download allowed"
)
def process(self):
data_smiles_list = []
data_list = []
if self.dataset =="l1000":
smiles_list, rdkit_mol_objs, cpd_id = _load_l1000_dataset(
self.raw_paths[0]
)
for i in range(len(smiles_list)):
print(i, end="\r")
rdkit_mol = rdkit_mol_objs[i]
# # convert aromatic bonds to double bonds
# Chem.SanitizeMol(rdkit_mol,
# sanitizeOps=Chem.SanitizeFlags.SANITIZE_KEKULIZE)
data = mol_to_graph_data_obj_simple(rdkit_mol)
# manually add mol id
data.id = torch.tensor([i]) # id here is the index of the mol in
# the dataset
#data.cpd_id = torch.tensor(cpd_id[i])
data_list.append(data)
data_smiles_list.append(smiles_list[i])
elif self.dataset == "bace":
smiles_list, rdkit_mol_objs, folds, labels = _load_bace_dataset(
self.raw_paths[0]
)
for i in range(len(smiles_list)):
print(i, end="\r")
rdkit_mol = rdkit_mol_objs[i]
# # convert aromatic bonds to double bonds
# Chem.SanitizeMol(rdkit_mol,
# sanitizeOps=Chem.SanitizeFlags.SANITIZE_KEKULIZE)
data = mol_to_graph_data_obj_simple(rdkit_mol)
# manually add mol id
data.id = torch.tensor([i]) # id here is the index of the mol in
# the dataset
data.y = torch.tensor([labels[i]])
data.fold = torch.tensor([folds[i]])
data_list.append(data)
data_smiles_list.append(smiles_list[i])
else:
raise ValueError("Invalid dataset name")
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
# write data_smiles_list in processed paths
data_smiles_series = pd.Series(data_smiles_list)
data_smiles_series.to_csv(
os.path.join(self.processed_dir, "smiles.csv"), index=False, header=False
)
if self.dataset == "repurposing":
data_names_series = pd.Series(data_names_list)
data_names_series.to_csv(
os.path.join(self.processed_dir, "drug_names.csv"),
index=False,
header=False,
)
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
# NB: only properly tested when dataset_1 is chembl_with_labels and dataset_2
# is pcba_pretrain
def merge_dataset_objs(dataset_1, dataset_2):
"""
Naively merge 2 molecule dataset objects, and ignore identities of
molecules. Assumes both datasets have multiple y labels, and will pad
accordingly. ie if dataset_1 has obj_1 with y dim 1310 and dataset_2 has
obj_2 with y dim 128, then the resulting obj_1 and obj_2 will have dim
1438, where obj_1 have the last 128 cols with 0, and obj_2 have
the first 1310 cols with 0.
:return: pytorch geometric dataset obj, with the x, edge_attr, edge_index,
new y attributes only
"""
d_1_y_dim = dataset_1[0].y.size()[0]
d_2_y_dim = dataset_2[0].y.size()[0]
data_list = []
# keep only x, edge_attr, edge_index, padded_y then append
for d in dataset_1:
old_y = d.y
new_y = torch.cat([old_y, torch.zeros(d_2_y_dim, dtype=torch.long)])
data_list.append(
Data(x=d.x, edge_index=d.edge_index, edge_attr=d.edge_attr, y=new_y)
)
for d in dataset_2:
old_y = d.y
new_y = torch.cat([torch.zeros(d_1_y_dim, dtype=torch.long), old_y.long()])
data_list.append(
Data(x=d.x, edge_index=d.edge_index, edge_attr=d.edge_attr, y=new_y)
)
# create 'empty' dataset obj. Just randomly pick a dataset and root path
# that has already been processed
new_dataset = MoleculeDataset(
root="dataset/chembl_with_labels", dataset="chembl_with_labels", empty=True
)
# collate manually
new_dataset.data, new_dataset.slices = new_dataset.collate(data_list)
return new_dataset
def _load_hiv_dataset(input_path):
"""
:param input_path:
:return: list of smiles, list of rdkit mol obj, np.array containing the
labels
"""
input_df = pd.read_csv(input_path, sep=",")
smiles_list = input_df["smiles"]
rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list]
labels = input_df["HIV_active"]
# convert 0 to -1
labels = labels.replace(0, -1)
# there are no nans
assert len(smiles_list) == len(rdkit_mol_objs_list)
assert len(smiles_list) == len(labels)
return smiles_list, rdkit_mol_objs_list, labels.values
def _load_l1000_dataset(input_path):
"""
:param input_path:
:return: list of smiles, list of rdkit mol obj, np.array containing the
labels
"""
input_df = pd.read_csv(input_path)
smiles_list = input_df["cpd_smiles"]
rdkit_mol_objs_list = [AllChem.MolFromSmiles(s) for s in smiles_list]
cpd_id = input_df["broad_cpd_id"]
# convert 0 to -1
# there are no nans
assert len(smiles_list) == len(rdkit_mol_objs_list)
assert len(smiles_list) == len(cpd_id)
return smiles_list, rdkit_mol_objs_list, cpd_id.values
def check_smiles_validity(smiles):
try:
m = Chem.MolFromSmiles(smiles)
if m:
return True
else:
return False
except AttributeError:
return False
def split_rdkit_mol_obj(mol):
"""
Split rdkit mol object containing multiple species or one species into a
list of mol objects or a list containing a single object respectively
:param mol:
:return:
"""
smiles = AllChem.MolToSmiles(mol, isomericSmiles=True)
smiles_list = smiles.split(".")
mol_species_list = []
for s in smiles_list:
if check_smiles_validity(s):
mol_species_list.append(AllChem.MolFromSmiles(s))
return mol_species_list
def get_largest_mol(mol_list):
"""
Given a list of rdkit mol objects, returns mol object containing the
largest num of atoms. If multiple containing largest num of atoms,
picks the first one
:param mol_list:
:return:
"""
num_atoms_list = [len(m.GetAtoms()) for m in mol_list]
largest_mol_idx = num_atoms_list.index(max(num_atoms_list))
return mol_list[largest_mol_idx]
def create_all_datasets():
# create dataset
downstream_dir = [
"bace",
"bbbp",
"clintox",
"esol",
"freesolv",
"hiv",
"lipophilicity",
"muv",
"sider",
"tox21",
"toxcast",
]
for dataset_name in downstream_dir:
print(dataset_name)
root = "dataset/" + dataset_name
os.makedirs(root + "/processed", exist_ok=True)
dataset = MoleculeDataset(root, dataset=dataset_name)
print(dataset)
#dataset = MoleculeDataset(root="/raid/home/yoyowu/MultiDCP/MultiDCP_data/data/l1000", dataset="l1000")
#print(dataset)