forked from mlcommons/inference
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunet_pytorch_to_onnx.py
76 lines (65 loc) · 3.05 KB
/
unet_pytorch_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# coding=utf-8
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
sys.path.insert(0, os.getcwd())
import argparse
import onnx
import torch
sys.path.insert(0, os.path.join(os.getcwd(), "nnUnet"))
from nnunet.training.model_restore import load_model_and_checkpoint_files
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir",
default="build/result/nnUNet/3d_fullres/Task043_BraTS2019/nnUNetTrainerV2__nnUNetPlansv2.mlperf.1",
help="Path to the PyTorch model")
parser.add_argument("--output_name",
default="224_224_160.onnx",
help="Name of output model")
parser.add_argument("--dynamic_bs_output_name",
default="224_224_160_dyanmic_bs.onnx",
help="Name of output model")
parser.add_argument("--output_dir",
default="build/model",
help="Directory to save output model")
args = parser.parse_args()
return args
def main():
args = get_args()
print("Converting PyTorch model to ONNX...")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
output_path = "./{}/{}".format(args.output_dir, args.output_name)
dynamic_bs_output_path = "./{}/{}".format(args.output_dir, args.dynamic_bs_output_name)
print("Loading Pytorch model...")
checkpoint_name = "model_final_checkpoint"
folds = 1
trainer, params = load_model_and_checkpoint_files(args.model_dir, folds, fp16=False, checkpoint_name=checkpoint_name)
trainer.load_checkpoint_ram(params[0], False)
height = 224
width = 224
depth = 160
channels = 4
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
dummy_input = torch.rand([1, channels, height, width, depth]).float().to(device)
torch.onnx.export(trainer.network, dummy_input, output_path, opset_version=11,
input_names=['input'], output_names=['output'])
torch.onnx.export(trainer.network, dummy_input, dynamic_bs_output_path, opset_version=11,
input_names=['input'], output_names=['output'],
dynamic_axes=({"input": {0: "batch_size"}, "output": {0: "batch_size"}}))
print("Successfully exported model {} and {}".format(output_path, dynamic_bs_output_path))
if __name__ == "__main__":
main()