forked from DuoLife-QNL/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
225 lines (200 loc) · 7.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import time
import networkx as nx
import numpy as np
import tensorflow as tf
from dgi import DGI, Classifier
from tensorflow.keras import layers
import dgl
from dgl.data import (
CiteseerGraphDataset,
CoraGraphDataset,
PubmedGraphDataset,
register_data_args,
)
def evaluate(model, features, labels, mask):
logits = model(features, training=False)
logits = logits[mask]
labels = labels[mask]
indices = tf.math.argmax(logits, axis=1)
acc = tf.reduce_mean(tf.cast(indices == labels, dtype=tf.float32))
return acc.numpy().item()
def main(args):
# load and preprocess dataset
if args.dataset == "cora":
data = CoraGraphDataset()
elif args.dataset == "citeseer":
data = CiteseerGraphDataset()
elif args.dataset == "pubmed":
data = PubmedGraphDataset()
else:
raise ValueError("Unknown dataset: {}".format(args.dataset))
g = data[0]
if args.gpu < 0:
device = "/cpu:0"
else:
device = "/gpu:{}".format(args.gpu)
g = g.to(device)
with tf.device(device):
features = g.ndata["feat"]
labels = g.ndata["label"]
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
# add self loop
if args.self_loop:
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
n_edges = g.number_of_edges()
# create DGI model
dgi = DGI(
g,
in_feats,
args.n_hidden,
args.n_layers,
tf.keras.layers.PReLU(
alpha_initializer=tf.constant_initializer(0.25)
),
args.dropout,
)
dgi_optimizer = tf.keras.optimizers.Adam(learning_rate=args.dgi_lr)
# train deep graph infomax
cnt_wait = 0
best = 1e9
best_t = 0
dur = []
for epoch in range(args.n_dgi_epochs):
if epoch >= 3:
t0 = time.time()
with tf.GradientTape() as tape:
loss = dgi(features)
# Manually Weight Decay
# We found Tensorflow has a different implementation on weight decay
# of Adam(W) optimizer with PyTorch. And this results in worse results.
# Manually adding weights to the loss to do weight decay solves this problem.
for weight in dgi.trainable_weights:
loss = loss + args.weight_decay * tf.nn.l2_loss(weight)
grads = tape.gradient(loss, dgi.trainable_weights)
dgi_optimizer.apply_gradients(zip(grads, dgi.trainable_weights))
if loss < best:
best = loss
best_t = epoch
cnt_wait = 0
dgi.save_weights("best_dgi.pkl")
else:
cnt_wait += 1
if cnt_wait == args.patience:
print("Early stopping!")
break
if epoch >= 3:
dur.append(time.time() - t0)
print(
"Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(
epoch,
np.mean(dur),
loss.numpy().item(),
n_edges / np.mean(dur) / 1000,
)
)
# create classifier model
classifier = Classifier(args.n_hidden, n_classes)
classifier_optimizer = tf.keras.optimizers.Adam(
learning_rate=args.classifier_lr
)
# train classifier
print("Loading {}th epoch".format(best_t))
dgi.load_weights("best_dgi.pkl")
embeds = dgi.encoder(features, corrupt=False)
embeds = tf.stop_gradient(embeds)
dur = []
loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True
)
for epoch in range(args.n_classifier_epochs):
if epoch >= 3:
t0 = time.time()
with tf.GradientTape() as tape:
preds = classifier(embeds)
loss = loss_fcn(labels[train_mask], preds[train_mask])
# Manually Weight Decay
# We found Tensorflow has a different implementation on weight decay
# of Adam(W) optimizer with PyTorch. And this results in worse results.
# Manually adding weights to the loss to do weight decay solves this problem.
# In original code, there's no weight decay applied in this part
# link: https://github.com/PetarV-/DGI/blob/master/execute.py#L121
# for weight in classifier.trainable_weights:
# loss = loss + \
# args.weight_decay * tf.nn.l2_loss(weight)
grads = tape.gradient(loss, classifier.trainable_weights)
classifier_optimizer.apply_gradients(
zip(grads, classifier.trainable_weights)
)
if epoch >= 3:
dur.append(time.time() - t0)
acc = evaluate(classifier, embeds, labels, val_mask)
print(
"Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(
epoch,
np.mean(dur),
loss.numpy().item(),
acc,
n_edges / np.mean(dur) / 1000,
)
)
print()
acc = evaluate(classifier, embeds, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="DGI")
register_data_args(parser)
parser.add_argument(
"--dropout", type=float, default=0.0, help="dropout probability"
)
parser.add_argument("--gpu", type=int, default=-1, help="gpu")
parser.add_argument(
"--dgi-lr", type=float, default=1e-3, help="dgi learning rate"
)
parser.add_argument(
"--classifier-lr",
type=float,
default=1e-2,
help="classifier learning rate",
)
parser.add_argument(
"--n-dgi-epochs",
type=int,
default=300,
help="number of training epochs",
)
parser.add_argument(
"--n-classifier-epochs",
type=int,
default=300,
help="number of training epochs",
)
parser.add_argument(
"--n-hidden", type=int, default=512, help="number of hidden gcn units"
)
parser.add_argument(
"--n-layers", type=int, default=1, help="number of hidden gcn layers"
)
parser.add_argument(
"--weight-decay", type=float, default=0.0, help="Weight for L2 loss"
)
parser.add_argument(
"--patience", type=int, default=20, help="early stop patience condition"
)
parser.add_argument(
"--self-loop",
action="store_true",
help="graph self-loop (default=False)",
)
parser.set_defaults(self_loop=False)
args = parser.parse_args()
print(args)
main(args)