forked from DuoLife-QNL/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
175 lines (153 loc) · 5.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import argparse, time
import numpy as np
import networkx as nx
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgi import DGI, Classifier
def evaluate(model, features, labels, mask):
model.eval()
with torch.no_grad():
logits = model(features)
logits = logits[mask]
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def main(args):
# load and preprocess dataset
data = load_data(args)
g = data[0]
features = torch.FloatTensor(g.ndata['feat'])
labels = torch.LongTensor(g.ndata['label'])
if hasattr(torch, 'BoolTensor'):
train_mask = torch.BoolTensor(g.ndata['train_mask'])
val_mask = torch.BoolTensor(g.ndata['val_mask'])
test_mask = torch.BoolTensor(g.ndata['test_mask'])
else:
train_mask = torch.ByteTensor(g.ndata['train_mask'])
val_mask = torch.ByteTensor(g.ndata['val_mask'])
test_mask = torch.ByteTensor(g.ndata['test_mask'])
in_feats = features.shape[1]
n_classes = data.num_classes
n_edges = g.number_of_edges()
if args.gpu < 0:
cuda = False
else:
cuda = True
torch.cuda.set_device(args.gpu)
features = features.cuda()
labels = labels.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
# add self loop
if args.self_loop:
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
n_edges = g.number_of_edges()
if args.gpu >= 0:
g = g.to(args.gpu)
# create DGI model
dgi = DGI(g,
in_feats,
args.n_hidden,
args.n_layers,
nn.PReLU(args.n_hidden),
args.dropout)
if cuda:
dgi.cuda()
dgi_optimizer = torch.optim.Adam(dgi.parameters(),
lr=args.dgi_lr,
weight_decay=args.weight_decay)
# train deep graph infomax
cnt_wait = 0
best = 1e9
best_t = 0
dur = []
for epoch in range(args.n_dgi_epochs):
dgi.train()
if epoch >= 3:
t0 = time.time()
dgi_optimizer.zero_grad()
loss = dgi(features)
loss.backward()
dgi_optimizer.step()
if loss < best:
best = loss
best_t = epoch
cnt_wait = 0
torch.save(dgi.state_dict(), 'best_dgi.pkl')
else:
cnt_wait += 1
if cnt_wait == args.patience:
print('Early stopping!')
break
if epoch >= 3:
dur.append(time.time() - t0)
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
n_edges / np.mean(dur) / 1000))
# create classifier model
classifier = Classifier(args.n_hidden, n_classes)
if cuda:
classifier.cuda()
classifier_optimizer = torch.optim.Adam(classifier.parameters(),
lr=args.classifier_lr,
weight_decay=args.weight_decay)
# train classifier
print('Loading {}th epoch'.format(best_t))
dgi.load_state_dict(torch.load('best_dgi.pkl'))
embeds = dgi.encoder(features, corrupt=False)
embeds = embeds.detach()
dur = []
for epoch in range(args.n_classifier_epochs):
classifier.train()
if epoch >= 3:
t0 = time.time()
classifier_optimizer.zero_grad()
preds = classifier(embeds)
loss = F.nll_loss(preds[train_mask], labels[train_mask])
loss.backward()
classifier_optimizer.step()
if epoch >= 3:
dur.append(time.time() - t0)
acc = evaluate(classifier, embeds, labels, val_mask)
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
"ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
acc, n_edges / np.mean(dur) / 1000))
print()
acc = evaluate(classifier, embeds, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='DGI')
register_data_args(parser)
parser.add_argument("--dropout", type=float, default=0.,
help="dropout probability")
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--dgi-lr", type=float, default=1e-3,
help="dgi learning rate")
parser.add_argument("--classifier-lr", type=float, default=1e-2,
help="classifier learning rate")
parser.add_argument("--n-dgi-epochs", type=int, default=300,
help="number of training epochs")
parser.add_argument("--n-classifier-epochs", type=int, default=300,
help="number of training epochs")
parser.add_argument("--n-hidden", type=int, default=512,
help="number of hidden gcn units")
parser.add_argument("--n-layers", type=int, default=1,
help="number of hidden gcn layers")
parser.add_argument("--weight-decay", type=float, default=0.,
help="Weight for L2 loss")
parser.add_argument("--patience", type=int, default=20,
help="early stop patience condition")
parser.add_argument("--self-loop", action='store_true',
help="graph self-loop (default=False)")
parser.set_defaults(self_loop=False)
args = parser.parse_args()
print(args)
main(args)