forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHGT_hetero.py
144 lines (121 loc) · 5.75 KB
/
HGT_hetero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import dgl
import math
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
from dgl.nn.functional import edge_softmax
from . import BaseModel, register_model
@register_model('HGT')
class HGT(BaseModel):
@classmethod
def build_model_from_args(cls, args, hg):
node_dict = {}
edge_dict = {}
for ntype in hg.ntypes:
node_dict[ntype] = len(node_dict)
for etype in hg.etypes:
edge_dict[etype] = len(edge_dict)
hg.edges[etype].data['id'] = th.ones(hg.number_of_edges(etype), dtype=th.long).to(args.device) * edge_dict[etype]
return cls(node_dict, edge_dict, args.hidden_dim, args.out_dim, args.num_layers, args.num_heads, args.dropout, category=args.category)
def __init__(self, node_dict, edge_dict, hidden_dim, out_dim, num_layers, n_heads, dropout, category, use_norm=True):
super(HGT, self).__init__()
self.node_dict = node_dict
self.edge_dict = edge_dict
self.category = category
self.gcs = nn.ModuleList()
self.hidden_dim = hidden_dim
self.out_dim = out_dim
self.num_layers = num_layers
self.adapt_ws = nn.ModuleList()
for _ in range(num_layers):
self.gcs.append(HGTLayer(hidden_dim, hidden_dim, node_dict, edge_dict, n_heads, dropout, use_norm = use_norm))
self.out = nn.Linear(hidden_dim, out_dim)
def forward(self, G, h_in=None):
h = h_in
for i in range(self.num_layers):
h = self.gcs[i](G, h)
return {self.category: self.out(h[self.category])}
class HGTLayer(nn.Module):
def __init__(self,
in_dim,
out_dim,
node_dict,
edge_dict,
n_heads,
dropout = 0.2,
use_norm = False):
super(HGTLayer, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.node_dict = node_dict
self.edge_dict = edge_dict
self.num_types = len(node_dict)
self.num_relations = len(edge_dict)
self.total_rel = self.num_types * self.num_relations * self.num_types
self.n_heads = n_heads
self.d_k = out_dim // n_heads
self.sqrt_dk = math.sqrt(self.d_k)
self.att = None
self.k_linears = nn.ModuleList()
self.q_linears = nn.ModuleList()
self.v_linears = nn.ModuleList()
self.a_linears = nn.ModuleList()
self.norms = nn.ModuleList()
self.use_norm = use_norm
for t in range(self.num_types):
self.k_linears.append(nn.Linear(in_dim, out_dim))
self.q_linears.append(nn.Linear(in_dim, out_dim))
self.v_linears.append(nn.Linear(in_dim, out_dim))
self.a_linears.append(nn.Linear(out_dim, out_dim))
if use_norm:
self.norms.append(nn.LayerNorm(out_dim))
self.relation_pri = nn.Parameter(th.ones(self.num_relations, self.n_heads))
self.relation_att = nn.Parameter(th.Tensor(self.num_relations, n_heads, self.d_k, self.d_k))
self.relation_msg = nn.Parameter(th.Tensor(self.num_relations, n_heads, self.d_k, self.d_k))
self.skip = nn.Parameter(th.ones(self.num_types))
self.drop = nn.Dropout(dropout)
nn.init.xavier_uniform_(self.relation_att)
nn.init.xavier_uniform_(self.relation_msg)
def forward(self, G, h):
with G.local_scope():
node_dict, edge_dict = self.node_dict, self.edge_dict
for srctype, etype, dsttype in G.canonical_etypes:
sub_graph = G[srctype, etype, dsttype]
k_linear = self.k_linears[node_dict[srctype]]
v_linear = self.v_linears[node_dict[srctype]]
q_linear = self.q_linears[node_dict[dsttype]]
k = k_linear(h[srctype]).view(-1, self.n_heads, self.d_k)
v = v_linear(h[srctype]).view(-1, self.n_heads, self.d_k)
q = q_linear(h[dsttype]).view(-1, self.n_heads, self.d_k)
e_id = self.edge_dict[etype]
relation_att = self.relation_att[e_id]
relation_pri = self.relation_pri[e_id]
relation_msg = self.relation_msg[e_id]
k = th.einsum("bij,ijk->bik", k, relation_att)
v = th.einsum("bij,ijk->bik", v, relation_msg)
sub_graph.srcdata['k'] = k
sub_graph.dstdata['q'] = q
sub_graph.srcdata['v_%d' % e_id] = v
sub_graph.apply_edges(fn.v_dot_u('q', 'k', 't'))
attn_score = sub_graph.edata.pop('t').sum(-1) * relation_pri / self.sqrt_dk
attn_score = edge_softmax(sub_graph, attn_score, norm_by='dst')
sub_graph.edata['t'] = attn_score.unsqueeze(-1)
G.multi_update_all({etype : (fn.u_mul_e('v_%d' % e_id, 't', 'm'), fn.sum('m', 't')) \
for etype, e_id in edge_dict.items()}, cross_reducer = 'mean')
new_h = {}
for ntype in G.ntypes:
'''
Step 3: Target-specific Aggregation
x = norm( W[node_type] * gelu( Agg(x) ) + x )
'''
n_id = node_dict[ntype]
alpha = th.sigmoid(self.skip[n_id])
t = G.nodes[ntype].data['t'].view(-1, self.out_dim)
trans_out = self.drop(self.a_linears[n_id](t))
trans_out = trans_out * alpha + h[ntype] * (1-alpha)
if self.use_norm:
new_h[ntype] = self.norms[n_id](trans_out)
else:
new_h[ntype] = trans_out
return new_h