forked from BUPT-GAMMA/GammaGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_trainer.py
198 lines (165 loc) · 8.06 KB
/
gen_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import time
import argparse
import numpy as np
import tensorlayerx as tlx
from gammagl.layers.conv import GCNConv
from gammagl.datasets import Planetoid
from gammagl.models import GEstimationN
from gammagl.utils import add_self_loops, mask_to_index
from tensorlayerx.model import TrainOneStep, WithLoss
from sklearn.metrics.pairwise import cosine_similarity as cos
class GCN(tlx.nn.Module):
def __init__(self, num_feature, num_class, hidden_size, dropout=0.5, activation="relu"):
super(GCN, self).__init__()
self.conv1 = GCNConv(num_feature, hidden_size)
self.conv2 = GCNConv(hidden_size, num_class)
self.dropout = tlx.layers.Dropout(dropout)
# assert activation in ["relu", "leaky_relu", "elu"]
self.activation = tlx.ReLU()
def forward(self, feature, adj):
x1 = self.activation(self.conv1(feature, adj))
x1 = self.dropout(x1)
x2 = self.conv2(x1, adj)
return x1, tlx.nn.LogSoftmax(dim=1)(x2)
class SemiSpvzLoss(WithLoss):
def __init__(self, net, loss_fn):
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn)
def forward(self, data, y):
_, logits = self.backbone_network(data['x'], data['edge_index'])
train_logits = tlx.gather(logits, data['train_idx'])
train_y = tlx.gather(data['y'], data['train_idx'])
loss = self._loss_fn(train_logits, train_y)
return loss
def prob_to_adj(mx, threshold):
mx = np.triu(mx, 1)
mx += mx.T
edge_index = np.where(mx > threshold)
return tlx.convert_to_tensor(edge_index)
def knn(num_node, feature, k):
adj = np.zeros((num_node, num_node), dtype=np.int64)
dist = cos(feature)
col = np.argpartition(dist, -(k + 1), axis=1)[:, -(k + 1):].flatten()
adj[np.arange(num_node).repeat(k + 1), col] = 1
return adj
def calculate_acc(logits, y, metrics):
metrics.update(logits, y)
rst = metrics.result()
metrics.reset()
return rst
def main(args):
if str.lower(args.dataset) not in ['cora', 'pubmed', 'citeseer']:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
dataset = Planetoid(args.dataset_path, args.dataset)
graph = dataset[0]
edge_index, _ = add_self_loops(graph.edge_index, num_nodes=graph.num_nodes)
# for mindspore, it should be passed into node indices
train_idx = mask_to_index(graph.train_mask)
test_idx = mask_to_index(graph.test_mask)
val_idx = mask_to_index(graph.val_mask)
estimator = GEstimationN(dataset)
data = {
"x": graph.x,
"y": graph.y,
"edge_index": edge_index,
"train_idx": train_idx,
"test_idx": test_idx,
"val_idx": val_idx,
"num_nodes": graph.num_nodes,
}
net = GCN(num_feature=dataset.num_node_features,
num_class=dataset.num_classes,
hidden_size=args.hidden)
train_weights = net.trainable_weights
optimizer = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.weight_decay)
loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits)
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)
metrics = tlx.metrics.Accuracy()
# Train Model
t_total = time.time()
global_best_acc_val = 0
global_hidden = None
global_output = None
for iter in range(args.iter):
start = time.time()
best_val_acc = 0
for epoch in range(args.n_epoch):
net.set_train()
train_loss = train_one_step(data, graph.y)
net.set_eval()
hidden_output, logits = net(data['x'], data['edge_index'])
val_logits = tlx.gather(logits, data['val_idx'])
val_y = tlx.gather(data['y'], data['val_idx'])
val_acc = calculate_acc(val_logits, val_y, metrics)
print("Epoch [{:0>3d}] ".format(epoch + 1) \
+ " train loss: {:.4f}".format(train_loss.item()) \
+ " val acc: {:.4f}".format(val_acc))
# save best model on evaluation set
if val_acc > best_val_acc:
best_val_acc = val_acc
if val_acc > global_best_acc_val:
global_best_acc_val = val_acc
global_hidden = hidden_output
global_output = logits
best_edge_index = data['edge_index']
net.save_weights(args.best_model_path + net.name + ".npz", format='npz_dict')
estimator.reset_obs()
estimator.update_obs(knn(graph.num_nodes, tlx.convert_to_numpy(graph.x), args.k))
estimator.update_obs(knn(graph.num_nodes, tlx.convert_to_numpy(global_hidden), args.k))
estimator.update_obs(knn(graph.num_nodes, tlx.convert_to_numpy(global_output), args.k))
# self.iter += 1
alpha, beta, O, Q, iterations = estimator.EM(tlx.argmax(global_output, 1), args.tolerance)
print(iterations)
data['edge_index'] = prob_to_adj(Q, args.threshold)
print("***********************************************************************************************")
print("Optimization Finished!")
print("Total time:{:.4f}s".format(time.time() - t_total),
"Best validation accuracy:{:.4f}".format(global_best_acc_val),
"EM iterations:{:04d}\n".format(iterations))
"""Evaluate the performance on testset.
"""
print("=== Testing ===")
print("Picking the best model according to validation performance")
net.load_weights(args.best_model_path + net.name + ".npz", format='npz_dict')
net.set_eval()
hidden_output, logits = net(data['x'], best_edge_index)
val_logits = tlx.gather(logits, data['val_idx'])
val_y = tlx.gather(data['y'], data['val_idx'])
val_acc = calculate_acc(val_logits, val_y, metrics)
test_logits = tlx.gather(logits, data['test_idx'])
test_y = tlx.gather(data['y'], data['test_idx'])
test_acc = calculate_acc(test_logits, test_y, metrics)
loss_test = tlx.losses.softmax_cross_entropy_with_logits(test_logits, test_y)
print("Val acc: {:.4f}".format(val_acc),
"Test loss: {:.4f}".format(loss_test),
"Test acc: {:.4f}".format(test_acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--base', type=str, default='gcn', choices=['gcn', 'sgc', 'gat', 'appnp', 'sage'])
parser.add_argument('--seed', type=int, default=9, help='random seed')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay (L2 loss on parameters)')
parser.add_argument('--hidden', type=int, default=16, help='hidden size')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate')
parser.add_argument('--activation', type=str, default='relu', choices=['relu', 'leaky_relu', 'elu'])
parser.add_argument('--dataset', type=str, default='citeseer',
choices=['cora', 'citeseer', 'pubmed'])
parser.add_argument("--dataset_path", type=str, default=r'', help="path to"
" save dataset")
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument('--n_epoch', type=int, default=200, help='number of epochs to train the base model')
parser.add_argument('--iter', type=int, default=30, help='number of iterations to train the GEN')
parser.add_argument('--k', type=int, default=9, help='k of knn graph')
parser.add_argument('--threshold', type=float, default=.5, help='threshold for adjacency matrix')
parser.add_argument('--tolerance', type=float, default=.01, help='tolerance to stop EM algorithm')
parser.add_argument("--gpu", type=int, default=0)
args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
main(args)