-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotate_pix_one_by_one.py
147 lines (124 loc) · 6.05 KB
/
rotate_pix_one_by_one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# 图像800x640的串行排列
# 任务是逐次以bbox为中心旋转整张图片
# 处理jpg 和 xml文件
# 按照源目录和标准命名备份
import xml.etree.ElementTree as ET
import os
import numpy as np
from os import getcwd
from PIL import Image
import cv2
import imgaug as ia
from imgaug import augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage
ia.seed(1)
def read_xml_annotation(image_id):
# members = tree.findall('object')
in_file = open(image_id)
tree = ET.parse(in_file)
root = tree.getroot()
box_list = []
objects = root.findall('object')
for object in objects:
bndbox = object.find('bndbox')
xmin = int(bndbox.find('xmin').text)
xmax = int(bndbox.find('xmax').text)
ymin = int(bndbox.find('ymin').text)
ymax = int(bndbox.find('ymax').text)
box_list.append((xmin, ymin, xmax, ymax))
return box_list
def change_xml_annotation(xml_path, new_boxes, i, image_size, store_path):
# i the sequence number of this box
in_file = open(xml_path)
tree = ET.parse(in_file)
xmlroot = tree.getroot()
xmlroot.find('size')[0].text = str(image_size[1]) # width
xmlroot.find('size')[1].text = str(image_size[0]) # height
objects = xmlroot.findall('object')
bndbox = objects[i].find('bndbox')
points = objects[i].find('shape')[0]
bndbox.find('xmin').text = str(new_boxes[0])
bndbox.find('ymin').text = str(new_boxes[1])
bndbox.find('xmax').text = str(new_boxes[2])
bndbox.find('ymax').text = str(new_boxes[3])
points[0].text = str(new_boxes[0])
points[1].text = str(new_boxes[1])
points[2].text = str(new_boxes[2])
points[3].text = str(new_boxes[3])
name_str = "_imgrotate_" + str(i) + "_" + str(rotate_angle[0])
tree.write(store_path + xml_path.split('\\')[-1][:-4] + name_str + '.xml')
def main(rotate_angle=10, scale=1.0):
path_list = []
path_list_copy = []
sourece_path = r'D:\iqiyi\DATA\organized2020-11-heri2ver'
store_path = r'D:\iqiyi\DATA\organized2020-11-heri2ver-imgrotated'
if not os.path.isdir(store_path):
os.mkdir(store_path)
for i in os.listdir(sourece_path):
temp_path = sourece_path + "\\" + i
path_list.append(temp_path) # 保存绝对地址
path_list_copy.append(store_path + "\\" + i)
if not os.path.isdir(store_path + "\\" + i):
os.mkdir(store_path + "\\" + i)
while len(path_list):
temp = path_list[-1]
temp_copy = path_list_copy[-1]
path_list.pop(-1)
path_list_copy.pop(-1)
file_list = os.listdir(temp)
for i in file_list:
if os.path.isdir(temp + "\\" + i):
path_list.append(temp + "\\" + i)
path_list_copy.append(temp_copy + "\\" + i)
os.mkdir(temp_copy + "\\" + i)
else:
if i[-4:] == r'.xml':
jpg_name = temp + "\\" + i[:-4] + r'.jpg'
xml_name = jpg_name[:-4] + r'.xml'
print(jpg_name)
normal_store = temp_copy + "\\"
img = cv2.imread(jpg_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# hape[0] ver, shape[1] heri, shape[3] channels
(h, w) = img.shape[:2]
boxes = read_xml_annotation(xml_name)
for j in range(len(boxes)):
x0 = boxes[j][0]
x1 = boxes[j][2]
y0 = boxes[j][1]
y1 = boxes[j][3]
center = ((x0 + x1) // 2, (y0 + y1) // 2)
if center[0] < 0 or center[1] < 0:
continue
M = cv2.getRotationMatrix2D(center, rotate_angle[0], scale)
sinv = abs(M[0][1])
cosv = abs(M[0][0])
img_r = cv2.warpAffine(img, M, (w, h))
a = center[0]
b = center[1]
xmin = min(cosv * (x0 - a) + sinv * (y0 - b), cosv * (x0 - a) + sinv * (y1 - b),
cosv * (x1 - a) + sinv * (y0 - b), cosv * (x1 - a) + sinv * (y1 - b)) + a
xmax = max(cosv * (x0 - a) + sinv * (y0 - b), cosv * (x0 - a) + sinv * (y1 - b),
cosv * (x1 - a) + sinv * (y0 - b), cosv * (x1 - a) + sinv * (y1 - b)) + a
ymin = min(-sinv * (x0 - a) + cosv * (y0 - b), -sinv * (x0 - a) + cosv * (y1 - b),
-sinv * (x1 - a) + cosv * (y0 - b), -sinv * (x1 - a) + cosv * (y1 - b)) + b
ymax = max(-sinv * (x0 - a) + cosv * (y0 - b), -sinv * (x0 - a) + cosv * (y1 - b),
-sinv * (x1 - a) + cosv * (y0 - b), -sinv * (x1 - a) + cosv * (y1 - b)) + b
# bbs_prediction = ia.BoundingBoxesOnImage([
# ia.BoundingBox(x1=xmin, y1=ymin, x2=xmax, y2=ymax)
# ], shape=img.shape)
# img_r = bbs_prediction.draw_on_image(img_r, size=1, color=111)
name_str = "_imgrotate_" + str(j) + "_" + str(rotate_angle[0])
cv2.imwrite(normal_store + "\\" + jpg_name.split('\\')[-1][:-4] + name_str + ".jpg", img_r)
img_wh = img.shape[:2]
new_bndbox = []
new_bndbox.append(max(xmin, 0))
new_bndbox.append(max(ymin, 0))
new_bndbox.append(min(xmax, img_wh[1]))
new_bndbox.append(min(ymax, img_wh[0]))
# 修改xml tree 并保存
change_xml_annotation(xml_name, new_bndbox, j, img_wh, normal_store)
# 超参数 : 外扩区域比例 gamma
rotate_angle = [10, 10]
scale = 1.0
main(rotate_angle, scale)