forked from bingzhewei/geom-gcn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_layers.py
263 lines (218 loc) · 11 KB
/
utils_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# MIT License
#
# Copyright (c) 2019 Geom-GCN Authors
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import dgl.function as fn
import torch as th
import torch.nn as nn
import torch.nn.functional as F
# Adapted from https://docs.dgl.ai/tutorials/models/1_gnn/1_gcn.html
class GCNSingleHead(nn.Module):
def __init__(self, in_feats, out_feats, activation, dropout_prob):
super(GCNSingleHead, self).__init__()
self.dropout = nn.Dropout(dropout_prob)
self.linear = nn.Linear(in_feats, out_feats, bias=False)
nn.init.xavier_uniform_(self.linear.weight)
self.activation = activation
def message_func(self, edges):
return {'m': edges.src['h']}
def reduce_func(self, nodes):
return {'h': th.sum(nodes.mailbox['m'], dim=1)}
def forward(self, g, feature):
h = self.dropout(feature)
h = self.linear(h)
h = h * g.ndata['norm']
g.ndata['h'] = h
g.update_all(self.message_func, self.reduce_func)
h = g.ndata.pop('h')
h = h * g.ndata['norm']
h = self.activation(h)
return h
class GCN(nn.Module):
def __init__(self, in_feats, out_feats, activation, num_heads, dropout_prob, merge):
super(GCN, self).__init__()
self.attention_heads = nn.ModuleList()
for _ in range(num_heads):
self.attention_heads.append(GCNSingleHead(in_feats, out_feats, activation, dropout_prob))
self.merge = merge
def forward(self, g, feature):
all_attention_head_outputs = [head(g, feature) for head in self.attention_heads]
if self.merge == 'cat':
return th.cat(all_attention_head_outputs, dim=1)
else:
return th.mean(th.stack(all_attention_head_outputs), dim=0)
# Adapted from https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
class GATSingleAttentionHead(nn.Module):
def __init__(self, in_feats, out_feats, activation, dropout_prob):
super(GATSingleAttentionHead, self).__init__()
self.in_feats_dropout = nn.Dropout(dropout_prob)
self.linear = nn.Linear(in_feats, out_feats, bias=False)
nn.init.xavier_uniform_(self.linear.weight)
self.attention_linear = nn.Linear(2 * out_feats, 1, bias=False)
nn.init.xavier_uniform_(self.attention_linear.weight)
self.attention_head_dropout = nn.Dropout(dropout_prob)
self.linear_feats_dropout = nn.Dropout(dropout_prob)
self.bias = nn.Parameter(th.ones(1, out_feats, dtype=th.float32, requires_grad=True))
nn.init.xavier_uniform_(self.bias.data)
self.activation = activation
def calculate_node_pairwise_attention(self, edges):
h_concat = th.cat([edges.src['Wh'], edges.dst['Wh']], dim=1)
e = self.attention_linear(h_concat)
e = F.leaky_relu(e, negative_slope=0.2)
return {'e': e}
def message_func(self, edges):
return {'Wh': edges.src['Wh'], 'e': edges.data['e']}
def reduce_func(self, nodes):
a = F.softmax(nodes.mailbox['e'], dim=1)
a_dropout = self.attention_head_dropout(a)
Wh_dropout = self.linear_feats_dropout(nodes.mailbox['Wh'])
return {'h_new': th.sum(a_dropout * Wh_dropout, dim=1)}
def forward(self, g, feature):
Wh = self.in_feats_dropout(feature)
Wh = self.linear(Wh)
g.ndata['Wh'] = Wh
g.apply_edges(self.calculate_node_pairwise_attention)
g.update_all(self.message_func, self.reduce_func)
h_new = g.ndata.pop('h_new')
h_new = self.activation(h_new + self.bias)
return h_new
# Adapted from https://docs.dgl.ai/tutorials/models/1_gnn/9_gat.html
class GAT(nn.Module):
def __init__(self, in_feats, out_feats, activation, num_heads, dropout_prob, merge):
super(GAT, self).__init__()
self.attention_heads = nn.ModuleList()
for _ in range(num_heads):
self.attention_heads.append(GATSingleAttentionHead(in_feats, out_feats, activation, dropout_prob))
self.merge = merge
def forward(self, g, feature):
all_attention_head_outputs = [head(g, feature) for head in self.attention_heads]
if self.merge == 'cat':
return th.cat(all_attention_head_outputs, dim=1)
else:
return th.mean(th.stack(all_attention_head_outputs), dim=0)
class GeomGCNSingleChannel(nn.Module):
def __init__(self, g, in_feats, out_feats, num_divisions, activation, dropout_prob, merge):
super(GeomGCNSingleChannel, self).__init__()
self.num_divisions = num_divisions
self.in_feats_dropout = nn.Dropout(dropout_prob)
self.linear_for_each_division = nn.ModuleList()
for i in range(self.num_divisions):
self.linear_for_each_division.append(nn.Linear(in_feats, out_feats, bias=False))
for i in range(self.num_divisions):
nn.init.xavier_uniform_(self.linear_for_each_division[i].weight)
self.activation = activation
self.g = g
self.subgraph_edge_list_of_list = self.get_subgraphs(self.g)
self.merge = merge
self.out_feats = out_feats
def get_subgraphs(self, g):
subgraph_edge_list = [[] for _ in range(self.num_divisions)]
u, v, eid = g.all_edges(form='all')
for i in range(g.number_of_edges()):
subgraph_edge_list[g.edges[u[i], v[i]].data['subgraph_idx']].append(eid[i])
return subgraph_edge_list
def forward(self, feature):
in_feats_dropout = self.in_feats_dropout(feature)
self.g.ndata['h'] = in_feats_dropout
for i in range(self.num_divisions):
subgraph = self.g.edge_subgraph(self.subgraph_edge_list_of_list[i])
subgraph.copy_from_parent()
subgraph.ndata[f'Wh_{i}'] = self.linear_for_each_division[i](subgraph.ndata['h']) * subgraph.ndata['norm']
subgraph.update_all(message_func=fn.copy_u(u=f'Wh_{i}', out=f'm_{i}'),
reduce_func=fn.sum(msg=f'm_{i}', out=f'h_{i}'))
subgraph.ndata.pop(f'Wh_{i}')
subgraph.copy_to_parent()
self.g.ndata.pop('h')
results_from_subgraph_list = []
for i in range(self.num_divisions):
if f'h_{i}' in self.g.node_attr_schemes():
results_from_subgraph_list.append(self.g.ndata.pop(f'h_{i}'))
else:
results_from_subgraph_list.append(
th.zeros((feature.size(0), self.out_feats), dtype=th.float32, device=feature.device))
if self.merge == 'cat':
h_new = th.cat(results_from_subgraph_list, dim=-1)
else:
h_new = th.mean(th.stack(results_from_subgraph_list, dim=-1), dim=-1)
h_new = h_new * self.g.ndata['norm']
h_new = self.activation(h_new)
return h_new
class GeomGCN(nn.Module):
def __init__(self, g, in_feats, out_feats, num_divisions, activation, num_heads, dropout_prob, ggcn_merge,
channel_merge):
super(GeomGCN, self).__init__()
self.attention_heads = nn.ModuleList()
for _ in range(num_heads):
self.attention_heads.append(
GeomGCNSingleChannel(g, in_feats, out_feats, num_divisions, activation, dropout_prob, ggcn_merge))
self.channel_merge = channel_merge
self.g = g
def forward(self, feature):
all_attention_head_outputs = [head(feature) for head in self.attention_heads]
if self.channel_merge == 'cat':
return th.cat(all_attention_head_outputs, dim=1)
else:
return th.mean(th.stack(all_attention_head_outputs), dim=0)
class GCNNet(nn.Module):
def __init__(self, num_input_features, num_output_classes, num_hidden, num_heads_layer_one, num_heads_layer_two,
dropout_rate):
super(GCNNet, self).__init__()
self.gcn1 = GCN(num_input_features, num_hidden, F.relu, num_heads_layer_one, dropout_rate, 'cat')
self.gcn2 = GCN(num_hidden * num_heads_layer_one, num_output_classes, lambda x: x, num_heads_layer_two,
dropout_rate, 'mean')
def forward(self, g, features):
x = self.gcn1(g, features)
x = self.gcn2(g, x)
return x
class GATNet(nn.Module):
def __init__(self, num_input_features, num_output_classes, num_hidden, num_heads_layer_one, num_heads_layer_two, dropout_rate):
super(GATNet, self).__init__()
self.gat1 = GAT(num_input_features, num_hidden, F.elu, num_heads_layer_one, dropout_rate, 'cat')
self.gat2 = GAT(num_hidden * num_heads_layer_one, num_output_classes, lambda x: x, num_heads_layer_two,
dropout_rate, 'mean')
def forward(self, g, features):
x = self.gat1(g, features)
x = self.gat2(g, x)
return x
class GeomGCNNet(nn.Module):
def __init__(self, g, num_input_features, num_output_classes, num_hidden, num_divisions, num_heads_layer_one,
num_heads_layer_two,
dropout_rate, layer_one_ggcn_merge, layer_one_channel_merge, layer_two_ggcn_merge,
layer_two_channel_merge):
super(GeomGCNNet, self).__init__()
self.geomgcn1 = GeomGCN(g, num_input_features, num_hidden, num_divisions, F.relu, num_heads_layer_one,
dropout_rate,
layer_one_ggcn_merge, layer_one_channel_merge)
if layer_one_ggcn_merge == 'cat':
layer_one_ggcn_merge_multiplier = num_divisions
else:
layer_one_ggcn_merge_multiplier = 1
if layer_one_channel_merge == 'cat':
layer_one_channel_merge_multiplier = num_heads_layer_one
else:
layer_one_channel_merge_multiplier = 1
self.geomgcn2 = GeomGCN(g, num_hidden * layer_one_ggcn_merge_multiplier * layer_one_channel_merge_multiplier,
num_output_classes, num_divisions, lambda x: x,
num_heads_layer_two, dropout_rate, layer_two_ggcn_merge, layer_two_channel_merge)
self.g = g
def forward(self, features):
x = self.geomgcn1(features)
x = self.geomgcn2(x)
return x