-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutil.py
282 lines (242 loc) · 11.2 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os, sys, json
import glob, torch
import numpy as np
import random, re, string, argparse
from collections import Counter
import getpass
from anthropic import Anthropic
from helm.common.authentication import Authentication
from helm.common.perspective_api_request import PerspectiveAPIRequest, PerspectiveAPIRequestResult
from helm.common.request import Request, RequestResult
from helm.common.tokenization_request import TokenizationRequest, TokenizationRequestResult
from helm.proxy.accounts import Account
from helm.proxy.services.remote_service import RemoteService
import datasets
from collections import namedtuple, defaultdict
from transformers import set_seed, AutoModelForSeq2SeqLM, AutoTokenizer, AutoModelForCausalLM, AutoConfig
import transformers
import datasets
import openai, time
from openai import OpenAI
# CRFM_KEY = "TODO"
# openai.api_key = "TODO"
# anthropic_api_key = "TODO"
def load_model(modelpath):
print(f'loading from {modelpath}')
tokenizer = transformers.AutoTokenizer.from_pretrained(modelpath)
tokenizer.padding_side = 'left'
tokenizer.pad_token = tokenizer.eos_token
print('---' * 100, modelpath, '---' * 100)
model = transformers.AutoModelForCausalLM.from_pretrained(modelpath, torch_dtype = torch.float16,
low_cpu_mem_usage = True,).cuda()
return model, tokenizer
def load_via_deepspeed(model_name):
from transformers.deepspeed import HfDeepSpeedConfig
config = AutoConfig.from_pretrained(model_name)
world_size = int(os.getenv('WORLD_SIZE', '1'))
dtype = config.torch_dtype # torch.bfloat16 if model_name in ["bigscience/bloom", "bigscience/bigscience-small-testing"] else torch.float16
model_hidden_size = config.hidden_size
train_batch_size = 1 * world_size
ds_config = {
"fp16": {
"enabled": dtype == torch.float16,
},
"bf16": {
"enabled": dtype == torch.bfloat16,
},
"zero_optimization": {
"stage": 3,
"overlap_comm": True,
"contiguous_gradients": True,
"reduce_bucket_size": model_hidden_size * model_hidden_size,
"stage3_prefetch_bucket_size": 0.9 * model_hidden_size * model_hidden_size,
"stage3_param_persistence_threshold": 0,
},
"steps_per_print": 2000,
"train_batch_size": train_batch_size,
"train_micro_batch_size_per_gpu": 1,
"wall_clock_breakdown": False,
}
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model = model.eval()
ds_engine = deepspeed.initialize(model=model, config_params=ds_config)[0]
ds_engine.module.eval()
model = ds_engine.module
return model
def gen_from_prompt(model, tokenizer, prompt, echo_prompt=False,
temperature=0., max_tokens=20, num_completions=1, output_scores=False,
service=None, seed=101, process_func=None, terminate_by_linebreak=True,
verbose=False, use_helm=False, auth=None):
if service is None:
assert model is not None
if process_func is not None:
prompt = process_func(prompt)
prompt_ids = tokenizer(prompt, return_tensors='pt', padding=True)
attention_mask = prompt_ids['attention_mask'].to(model.device)
prompt_ids = prompt_ids['input_ids'].to(model.device)
with torch.autocast(device_type='cuda', dtype=torch.bfloat16,): # if True: # LISA_DEBUG
generated_ids = model.generate(input_ids=prompt_ids, attention_mask=attention_mask,
temperature=temperature, do_sample=True,
max_length=max_tokens + prompt_ids.size(1),
num_return_sequences=num_completions,
eos_token_id=2, pad_token_id=2)
generated_text = tokenizer.batch_decode(generated_ids[:, prompt_ids.size(1):], skip_special_tokens=True)
if terminate_by_linebreak == 'no':
generated_text = [x for x in generated_text]
else:
generated_text = [x.split('\n')[0] for x in generated_text]
Completion = namedtuple('Completion', ['text'])
compl = [Completion(text=x) for x in generated_text]
RequestResult = namedtuple('RequestResult', ['completions', 'success', 'embedding', 'cached'])
request_result = RequestResult(completions=compl, success=True, embedding=None,
cached=False)
elif model.startswith('gpt'):
generated_text = query_gpt4(client=service, model=model, prompt_lst=prompt, temperature=temperature, max_tokens=max_tokens,
num_completions=num_completions, random=str(seed), verbose=verbose) # stop_sequences=['\n']) #
# print(generated_text, 'turbo')
Completion = namedtuple('Completion', ['text'])
compl = [Completion(text=x) for x in generated_text]
RequestResult = namedtuple('RequestResult', ['completions', 'success', 'embedding', 'cached'])
request_result = RequestResult(completions=compl, success=True, embedding=None,
cached=False)
elif model.startswith('claude'):
generated_text = query_claude(client=service, model=model, prompt_lst=prompt, temperature=temperature,
max_tokens=max_tokens, num_completions=num_completions, random=str(seed), verbose=verbose)
# print(generated_text, 'turbo')
Completion = namedtuple('Completion', ['text'])
compl = [Completion(text=x) for x in generated_text]
RequestResult = namedtuple('RequestResult', ['completions', 'success', 'embedding', 'cached'])
request_result = RequestResult(completions=compl, success=True, embedding=None,
cached=False)
elif use_helm:
assert len(prompt) == 1 # only one prompt
request_result = None
num_retry = 0
max_retry = 5
while num_retry < max_retry:
try:
request = Request(model=model, prompt=prompt[0], echo_prompt=echo_prompt, ##"openai/text-davinci-003",
temperature=temperature, max_tokens=max_tokens,
num_completions=num_completions, random=str(seed), stop_sequences=['\n']) #
request_result = service.make_request(auth, request)
break
except Exception as e:
print(e)
print('retrying...')
num_retry += 1
time.sleep(10)
if request_result is None:
raise RuntimeError(f"Could not get completion after {max_retry} retries.")
else:
raise NotImplementedError
return request_result
def query_claude(client, model, prompt_lst, temperature, max_tokens, num_completions, random, verbose, max_num_retries=5):
num_retries = 0
result_lst = []
# Repeat the query until we get a valid response.
message = None
for prompt in prompt_lst:
while num_retries < max_num_retries:
try:
if verbose:
print(f"+++++++++++ Model Prompt +++++++++++\n {prompt}")
message = client.messages.create(
max_tokens=max_tokens,
temperature=temperature,
messages=[
{
"role": "user",
"content": prompt,
}
],
model=model,
)
break
except: # noqa
print("Retrying...")
num_retries += 1
time.sleep(10)
if message is None:
raise RuntimeError(f"Could not get completion after {max_num_retries} retries.")
result_txt = message.content[0].text
if verbose:
print(f"+++++++++++ Model Output +++++++++++\n {result_txt}")
result_txt = result_txt.strip()
result_lst.append(result_txt)
return result_lst
def query_gpt4(client, model, prompt_lst, temperature, max_tokens, num_completions, random, verbose, max_num_retries=5):
# Randomly select one assistant to be presented first.
num_retries = 0
result_lst = []
# Repeat the query until we get a valid response.
completion = None
for prompt in prompt_lst:
while num_retries < max_num_retries:
try:
if verbose:
print(f"+++++++++++ Model Prompt +++++++++++\n {prompt}")
completion = client.chat.completions.create(
model=model, #"gpt-4", #"gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "You are a helpful AI agent.",
},
{
"role": "user",
"content": prompt,
},
],
temperature=temperature,
max_tokens=max_tokens,
n=num_completions,
# stop=["\n"],
)
break
except Exception as e: # noqa
print(e)
print("Retrying...")
num_retries += 1
time.sleep(10)
if completion is None:
raise RuntimeError(f"Could not get completion after {max_num_retries} retries.")
result_txt = completion.choices[0].message.content
if verbose:
usage = completion.usage
print(usage)
total_tokens = usage.total_tokens
print(total_tokens, 'total tokens')
if verbose:
print(f"+++++++++++ Model Output +++++++++++\n {result_txt}")
result_txt = result_txt.strip()
result_lst.append(result_txt)
return result_lst
def helm_process_args(experiment_model):
# An example of how to use the request API.
# api_key = getpass.getpass(prompt="Enter a valid API key: ")
auth = Authentication(api_key=CRFM_KEY)
service = RemoteService("https://crfm-models.stanford.edu")
# Access account and show my current quotas and usages
account: Account = service.get_account(auth)
print(account.usages)
return experiment_model.lower(), None, service, auth
def process_args_for_models(experiment_model):
if experiment_model.startswith('gpt'):
modelpath = experiment_model
model_choice = modelpath
tokenizer_choice = None
modelpath_name = modelpath
model_client = OpenAI(api_key=openai.api_key, organization=openai.organization)
elif experiment_model.startswith('claude'):
client = Anthropic(
api_key=anthropic_api_key,
)
model_choice = experiment_model
tokenizer_choice = None
model_client = client
modelpath_name = experiment_model
else:
model_choice, tokenizer_choice = load_model(experiment_model)
modelpath_name = os.path.basename(experiment_model).replace('/', '_')
model_client = None
return model_choice, tokenizer_choice, modelpath_name, model_client