-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_with_finetune.py
291 lines (251 loc) · 10.9 KB
/
train_with_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import re
import rouge
import jieba
import torch
import argparse
import numpy as np
from tqdm.auto import tqdm
from bert4torch.models import *
from torch.utils.data import DataLoader, Dataset
from torch._six import container_abcs, string_classes, int_classes
from transformers import MT5ForConditionalGeneration, BertTokenizer
def load_data(filename):
"""加载数据
单条格式:(标题, 正文)
"""
D = []
with open(filename, encoding='utf-8') as f:
for l in f.readlines():
cur = l.strip().split('\t')
if len(cur) == 2:
title, content = cur[0], cur[1]
D.append((title, content))
elif len(cur) == 1:
content = cur[0]
D.append(content)
return D
class T5PegasusTokenizer(BertTokenizer):
"""结合中文特点完善的Tokenizer
基于词颗粒度的分词,如词表中未出现,再调用BERT原生Tokenizer
"""
def __init__(self, pre_tokenizer=lambda x: jieba.cut(x, HMM=False), *args, **kwargs):
super().__init__(*args, **kwargs)
self.pre_tokenizer = pre_tokenizer
def _tokenize(self, text, *arg, **kwargs):
split_tokens = []
for text in self.pre_tokenizer(text):
if text in self.vocab:
split_tokens.append(text)
else:
split_tokens.extend(super()._tokenize(text))
return split_tokens
class KeyDataset(Dataset):
def __init__(self, dict_data):
self.data = dict_data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def create_data(data, tokenizer, max_len=512, term='train'):
"""调用tokenizer.encode编码正文/标题,每条样本用dict表示数据域
"""
ret, flag = [], True
for title, content in data:
text_ids = tokenizer.encode(content, max_length=max_len, truncation='only_first')
if flag and term == 'train':
flag = False
print(content)
if term == 'train':
summary_ids = tokenizer.encode(title, max_length=max_len, truncation='only_first')
features = {'input_ids': text_ids,
'decoder_input_ids': summary_ids,
'attention_mask': [1] * len(text_ids),
'decoder_attention_mask': [1] * len(summary_ids)
}
elif term == 'dev':
features = {'input_ids': text_ids,
'attention_mask': [1] * len(text_ids),
'title': title
}
ret.append(features)
return ret
def sequence_padding(inputs, length=None, padding=0):
"""Numpy函数,将序列padding到同一长度
"""
if length is None:
length = max([len(x) for x in inputs])
pad_width = [(0, 0) for _ in np.shape(inputs[0])]
outputs = []
for x in inputs:
x = x[:length]
pad_width[0] = (0, length - len(x))
x = np.pad(x, pad_width, 'constant', constant_values=padding)
outputs.append(x)
return np.array(outputs, dtype='int64')
def default_collate(batch):
"""组batch
各个数据域分别转换为tensor,tensor第一个维度等于batch_size
"""
np_str_obj_array_pattern = re.compile(r'[SaUO]')
default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}")
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return default_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int_classes):
return torch.tensor(batch, dtype=torch.long)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, container_abcs.Mapping):
return {key: default_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(default_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, container_abcs.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
batch = sequence_padding(batch)
return default_collate([default_collate(elem) for elem in batch])
raise TypeError(default_collate_err_msg_format.format(elem_type))
def prepare_data(args, data_path, tokenizer, term='train'):
"""准备batch数据
"""
data = load_data(data_path)
data = create_data(data, tokenizer, args.max_len, term)
data = KeyDataset(data)
data = DataLoader(data, batch_size=args.batch_size, collate_fn=default_collate)
return data
def compute_rouge(source, target):
"""计算rouge-1、rouge-2、rouge-l
"""
source, target = ' '.join(source), ' '.join(target)
try:
scores = rouge.Rouge().get_scores(hyps=source, refs=target)
return {
'rouge-1': scores[0]['rouge-1']['f'],
'rouge-2': scores[0]['rouge-2']['f'],
'rouge-l': scores[0]['rouge-l']['f'],
}
except ValueError:
return {
'rouge-1': 0.0,
'rouge-2': 0.0,
'rouge-l': 0.0,
}
def compute_rouges(sources, targets):
scores = {
'rouge-1': 0.0,
'rouge-2': 0.0,
'rouge-l': 0.0,
}
for source, target in zip(sources, targets):
score = compute_rouge(source, target)
for k, v in scores.items():
scores[k] = v + score[k]
return {k: v / len(targets) for k, v in scores.items()}
def train_model(model, adam, train_data, dev_data, tokenizer, device, args):
if not os.path.exists(args.model_dir):
os.mkdir(args.model_dir)
best = 0
for epoch in range(args.num_epoch):
model.train()
for i, cur in enumerate(tqdm(train_data, desc='Epoch {}:'.format(epoch))):
cur = {k: v.to(device) for k, v in cur.items()}
prob = model(**cur)[0]
mask = cur['decoder_attention_mask'][:, 1:].reshape(-1).bool()
prob = prob[:, :-1]
prob = prob.reshape((-1, prob.size(-1)))[mask]
labels = cur['decoder_input_ids'][:, 1:].reshape(-1)[mask]
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(prob, labels)
if i % 100 == 0:
print("Iter {}: Training Loss: {}".format(i, loss.item()))
loss.backward()
adam.step()
adam.zero_grad()
# 验证
model.eval()
gens = []
summaries = []
for feature in tqdm(dev_data):
title = feature['title']
content = {k : v.to(device) for k, v in feature.items() if k != 'title'}
if args.data_parallel and torch.cuda.is_available():
gen = model.module.generate(max_length=args.max_len_generate,
eos_token_id=tokenizer.sep_token_id,
decoder_start_token_id=tokenizer.cls_token_id,
**content)
else:
gen = model.generate(max_length=args.max_len_generate,
eos_token_id=tokenizer.sep_token_id,
decoder_start_token_id=tokenizer.cls_token_id,
**content)
gen = tokenizer.batch_decode(gen, skip_special_tokens=True)
gen = [item.replace(' ', '') for item in gen]
# print(title)
# print(gen)
gens.extend(gen)
summaries.extend(title)
scores = compute_rouges(gens, summaries)
print("Validation Loss: {}".format(scores))
rouge_l = scores['rouge-l']
if rouge_l > best:
best = rouge_l
if args.data_parallel and torch.cuda.is_available():
torch.save(model.module, os.path.join(args.model_dir, 'summary_model'))
else:
torch.save(model, os.path.join(args.model_dir, 'summary_model'))
# torch.save(model, os.path.join(args.model_dir, 'summary_model_epoch_{}'.format(str(epoch))))
def init_argument():
parser = argparse.ArgumentParser(description='t5-pegasus-chinese')
parser.add_argument('--train_data', default='./data/train.tsv')
parser.add_argument('--dev_data', default='./data/dev.tsv')
parser.add_argument('--pretrain_model', default='./t5_pegasus_pretrain')
parser.add_argument('--model_dir', default='./saved_model')
parser.add_argument('--num_epoch', default=5, help='number of epoch')
parser.add_argument('--batch_size', default=16, help='batch size')
parser.add_argument('--lr', default=2e-4, help='learning rate')
parser.add_argument('--data_parallel', default=False)
parser.add_argument('--max_len', default=512, help='max length of inputs')
parser.add_argument('--max_len_generate', default=40, help='max length of outputs')
args = parser.parse_args()
return args
if __name__ == '__main__':
# step 1. init argument
args = init_argument()
# step 2. prepare training data and validation data
tokenizer = T5PegasusTokenizer.from_pretrained(args.pretrain_model)
train_data = prepare_data(args, args.train_data, tokenizer, term='train')
dev_data = prepare_data(args, args.dev_data, tokenizer, term='dev')
# step 3. load pretrain model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = MT5ForConditionalGeneration \
.from_pretrained(args.pretrain_model).to(device)
if args.data_parallel and torch.cuda.is_available():
device_ids = range(torch.cuda.device_count())
model = torch.nn.DataParallel(model, device_ids=device_ids)
# step 4. finetune
adam = torch.optim.Adam(model.parameters(), lr=args.lr)
train_model(model, adam, train_data, dev_data, tokenizer, device, args)