-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_with_generate.py
284 lines (237 loc) · 9.67 KB
/
predict_with_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from transformers import MT5ForConditionalGeneration
import jieba
from transformers import BertTokenizer, BatchEncoding
from torch._six import container_abcs, string_classes, int_classes
import torch
from torch.utils.data import DataLoader, Dataset
import re
import os
import csv
import argparse
from tqdm.auto import tqdm
from multiprocessing import Pool, Process
import pandas as pd
import numpy as np
import rouge
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def load_data(filename):
"""加载数据
单条格式:(正文) 或 (标题, 正文)
"""
D = []
with open(filename, encoding='utf-8') as f:
for l in f.readlines():
cur = l.strip().split('\t')
if len(cur) == 2:
title, content = cur[0], cur[1]
D.append((title, content))
elif len(cur) == 1:
content = cur[0]
D.append(content)
return D
class T5PegasusTokenizer(BertTokenizer):
"""结合中文特点完善的Tokenizer
基于词颗粒度的分词,如词表中未出现,再调用BERT原生Tokenizer
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def pre_tokenizer(self, x):
return jieba.cut(x, HMM=False)
def _tokenize(self, text, *arg, **kwargs):
split_tokens = []
for text in self.pre_tokenizer(text):
if text in self.vocab:
split_tokens.append(text)
else:
split_tokens.extend(super()._tokenize(text))
return split_tokens
class KeyDataset(Dataset):
def __init__(self, dict_data):
self.data = dict_data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def create_data(data, tokenizer, max_len):
"""调用tokenizer.encode编码正文/标题,每条样本用dict表示数据域
"""
ret, flag, title = [], True, None
for content in data:
if type(content) == tuple:
title, content = content
text_ids = tokenizer.encode(content, max_length=max_len,
truncation='only_first')
if flag:
flag = False
print(content)
features = {'input_ids': text_ids,
'attention_mask': [1] * len(text_ids),
'raw_data': content}
if title:
features['title'] = title
ret.append(features)
return ret
def sequence_padding(inputs, length=None, padding=0):
"""Numpy函数,将序列padding到同一长度
"""
if length is None:
length = max([len(x) for x in inputs])
pad_width = [(0, 0) for _ in np.shape(inputs[0])]
outputs = []
for x in inputs:
x = x[:length]
pad_width[0] = (0, length - len(x))
x = np.pad(x, pad_width, 'constant', constant_values=padding)
outputs.append(x)
return np.array(outputs, dtype='int64')
def default_collate(batch):
"""组batch
各个数据域分别转换为tensor,tensor第一个维度等于batch_size
"""
np_str_obj_array_pattern = re.compile(r'[SaUO]')
default_collate_err_msg_format = (
"default_collate: batch must contain tensors, numpy arrays, numbers, "
"dicts or lists; found {}")
elem = batch[0]
elem_type = type(elem)
if isinstance(elem, torch.Tensor):
out = None
if torch.utils.data.get_worker_info() is not None:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = elem.storage()._new_shared(numel)
out = elem.new(storage)
return torch.stack(batch, 0, out=out).to(device)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return default_collate([torch.as_tensor(b) for b in batch])
elif elem.shape == (): # scalars
return torch.as_tensor(batch)
elif isinstance(elem, float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(elem, int_classes):
return torch.tensor(batch, dtype=torch.long)
elif isinstance(elem, string_classes):
return batch
elif isinstance(elem, container_abcs.Mapping):
return {key: default_collate([d[key] for d in batch]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
return elem_type(*(default_collate(samples) for samples in zip(*batch)))
elif isinstance(elem, container_abcs.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
batch = sequence_padding(batch)
return default_collate([default_collate(elem) for elem in batch])
raise TypeError(default_collate_err_msg_format.format(elem_type))
def prepare_data(args, tokenizer):
"""准备batch数据
"""
test_data = load_data(args.test_data)
test_data = create_data(test_data, tokenizer, args.max_len)
test_data = KeyDataset(test_data)
test_data = DataLoader(test_data, batch_size=args.batch_size, collate_fn=default_collate)
return test_data
def compute_rouge(source, target):
"""计算rouge-1、rouge-2、rouge-l
"""
source, target = ' '.join(source), ' '.join(target)
try:
scores = rouge.Rouge().get_scores(hyps=source, refs=target)
return {
'rouge-1': scores[0]['rouge-1']['f'],
'rouge-2': scores[0]['rouge-2']['f'],
'rouge-l': scores[0]['rouge-l']['f'],
}
except ValueError:
return {
'rouge-1': 0.0,
'rouge-2': 0.0,
'rouge-l': 0.0,
}
def compute_rouges(sources, targets):
scores = {
'rouge-1': 0.0,
'rouge-2': 0.0,
'rouge-l': 0.0,
}
for source, target in zip(sources, targets):
score = compute_rouge(source, target)
for k, v in scores.items():
scores[k] = v + score[k]
return {k: v / len(targets) for k, v in scores.items()}
def generate(test_data, model, tokenizer, args):
gens, summaries = [], []
with open(args.result_file, 'w', encoding='utf-8', newline='') as f:
writer = csv.writer(f, delimiter='\t')
model.eval()
for feature in tqdm(test_data):
raw_data = feature['raw_data']
content = {k: v for k, v in feature.items() if k not in ['raw_data', 'title']}
gen = model.generate(max_length=args.max_len_generate,
eos_token_id=tokenizer.sep_token_id,
decoder_start_token_id=tokenizer.cls_token_id,
**content)
gen = tokenizer.batch_decode(gen, skip_special_tokens=True)
gen = [item.replace(' ', '') for item in gen]
writer.writerows(zip(gen, raw_data))
gens.extend(gen)
if 'title' in feature:
summaries.extend(feature['title'])
if summaries:
scores = compute_rouges(gens, summaries)
print(scores)
print('Done!')
def generate_multiprocess(feature):
"""多进程
"""
model.eval()
raw_data = feature['raw_data']
content = {k: v for k, v in feature.items() if k != 'raw_data'}
gen = model.generate(max_length=args.max_len_generate,
eos_token_id=tokenizer.sep_token_id,
decoder_start_token_id=tokenizer.cls_token_id,
**content)
gen = tokenizer.batch_decode(gen, skip_special_tokens=True)
results = ["{}\t{}".format(x.replace(' ', ''), y) for x, y in zip(gen, raw_data)]
return results
def init_argument():
parser = argparse.ArgumentParser(description='t5-pegasus-chinese')
parser.add_argument('--test_data', default='./data/predict.tsv')
parser.add_argument('--result_file', default='./data/predict_result_hello.tsv')
parser.add_argument('--pretrain_model', default='./t5_pegasus_pretrain')
parser.add_argument('--model', default='./saved_model/summary_model')
parser.add_argument('--batch_size', default=16, help='batch size')
parser.add_argument('--max_len', default=512, help='max length of inputs')
parser.add_argument('--max_len_generate', default=40, help='max length of generated text')
parser.add_argument('--use_multiprocess', default=False, action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
# step 1. init argument
args = init_argument()
# step 2. prepare test data
tokenizer = T5PegasusTokenizer.from_pretrained(args.pretrain_model)
test_data = prepare_data(args, tokenizer)
# step 3. load finetuned model
model = torch.load(args.model, map_location=device)
# step 4. predict
res = []
if args.use_multiprocess and device == 'cpu':
print('Parent process %s.' % os.getpid())
p = Pool(2)
res = p.map_async(generate_multiprocess, test_data, chunksize=2).get()
print('Waiting for all subprocesses done...')
p.close()
p.join()
res = pd.DataFrame([item for batch in res for item in batch])
res.to_csv(args.result_file, index=False, header=False, encoding='utf-8')
print('Done!')
else:
generate(test_data, model, tokenizer, args)