-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworkflow_analysis.py
5613 lines (5113 loc) · 245 KB
/
workflow_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import points_analysis_2D_freud as pa
import numpy as np
import matplotlib.pyplot as plt
import os
import math
import pandas as pd
R"""
Introduction:
the workflow of data proceeding.
1. import data_retriever, to get the index of simulation you want to know.
2. import proceed_file, to transform the type of file you prefer.
3. import workflow_analysis or data_analysis_cycle, to use it as a control table to proceed data.
4. import points_analysis_2D, if a new analysis method is in need of programming.
Examples:
#1
import data_retriever as dr
se = dr.search_engine_for_simulation_database()
se.get_table_names()
#2
import workflow_analysis as wa
bds = wa.show_bonds_transition_from_hex_to_honeycomb()
bds.get_bond_trap_plot_unit()
"""
class get_msd_from_gsd:
def __init__(self):
pass
def get_msd(self, simu_index=5208, seed=9, account='remote'):
self.prefix = "/home/"+account+"/Downloads/"
self.str_index = str(int(simu_index))+'_'+str(int(seed))
self.create_folder()
self.prefix = self.prefix+self.str_index+"/"
gsd_data = pa.proceed_gsd_file(account=account, simu_index=simu_index, seed=seed)
gsd_data.get_trajectory_data(self.prefix)
gsd_data.get_trajectory_stable_data(self.prefix)
file_txyz_npy = self.prefix+'txyz_stable.npy' # _stable
txyz_stable = np.load(file_txyz_npy)
"""
dpa = pa.dynamic_points_analysis_2d(txyz_stable)
dpa.plot_trajectory_single_particle(10)
"""
msdm = pa.mean_square_displacement(txyz_stable, 'simu')
record = msdm.compute_atmsd_scan_t_log_record()
png_filename = self.prefix+'msd_chips_long_loglog.png'
msdm.plot_msd_t_chips(png_filename=png_filename)
txt_filename = self.prefix+'msd_chips_long_loglog.txt'
np.savetxt(txt_filename, record)
return self.prefix
def create_folder(self):
folder_name = self.prefix+self.str_index # +"/"
# check if the folder exists
isExists = os.path.exists(folder_name)
if isExists:
pass
else:
os.makedirs(folder_name)
class get_displacement_field:
def __init__(self):
pass
def get_displacement_field_1():
# gsd_data = pa.proceed_gsd_file(account='remote',simu_index=5208,seed=9)
save_prefix = "/home/remote/Downloads/5208_9/"
file_txyz_npy = save_prefix+'txyz.npy' # _stable
file_txyz_npy = save_prefix+'txyz_stable.npy' # _stable
txyz_stable = np.load(file_txyz_npy)
txyz_stable = txyz_stable[:, :, 0:2]
# dpa = pa.dynamic_points_analysis_2d(txyz_stable)
# dpa.plot_trajectory_single_particle(save_prefix)
df = pa.displacemnt_field_2D(txyz_stable)
png_filename = save_prefix+'displacement_field.png'
uv = df.get_displacement_field_xy(frame_index_start=0, plot=True, png_filename=png_filename)
vector_avg = np.average(uv, 0)
vector_avg_dt = vector_avg/20000
txyz_stable_tuned = np.zeros(np.shape(txyz_stable))
for i in range(20001):
txyz_stable_tuned[i, :] = txyz_stable[i, :]-vector_avg_dt*i
png_filename = save_prefix+'displacement_field_tuned.png'
df.get_displacement_field_xy(plot=True, png_filename=png_filename)
filename_npy = save_prefix + 'txyz_stable_tuned'
np.save(filename_npy, txyz_stable_tuned)
def get_displacement_field_normal(self, save_prefix):
# gsd_data = pa.proceed_gsd_file(account='remote',simu_index=5208,seed=9)
# save_prefix = "/home/remote/Downloads/5208_9/"
file_txyz_npy = save_prefix+'txyz.npy' # _stable
file_txyz_npy = save_prefix+'txyz_stable.npy' # _stable
txyz_stable = np.load(file_txyz_npy)
txyz_stable = txyz_stable[:, :, 0:2]
# dpa = pa.dynamic_points_analysis_2d(txyz_stable)
# dpa.plot_trajectory_single_particle(save_prefix)
df = pa.displacemnt_field_2D(txyz_stable)
png_filename = save_prefix+'displacement_field.png'
uv = df.get_displacement_field_xy(plot=True, png_filename=png_filename)
def get_displacement_field_dedrift():
# gsd_data = pa.proceed_gsd_file(account='remote',simu_index=5208,seed=9)
save_prefix = "/home/remote/Downloads/5208_9/"
file_txyz_npy = save_prefix+'txyz.npy' # _stable
file_txyz_npy = save_prefix+'txyz_stable.npy' # _stable
txyz_stable = np.load(file_txyz_npy)
txyz_stable = txyz_stable[:, :, 0:2]
np.shape(txyz_stable)
txyz_stable_tuned = np.zeros(np.shape(txyz_stable))
for i in range(20001):
txyz_stable_tuned[i, :] = txyz_stable[i, :] # -vector_avg_dt*i
# dpa = pa.dynamic_points_analysis_2d(txyz_stable)
# dpa.plot_trajectory_single_particle(save_prefix)
df = pa.displacemnt_field_2D(txyz_stable)
png_filename = save_prefix+'displacement_field.png'
uv = df.get_displacement_field_xy(frame_index_start=0, plot=True, png_filename=png_filename)
vector_avg = np.average(uv, 0)
vector_avg_dt = vector_avg/20000
png_filename = save_prefix+'displacement_field_tuned.png'
df.get_displacement_field_xy(plot=True, png_filename=png_filename)
filename_npy = save_prefix + 'txyz_stable_tuned'
np.save(filename_npy, txyz_stable_tuned)
class check_box:
def __init__(self):
gsd_data = pa.proceed_gsd_file(account='remote', simu_index=5208, seed=9)
lx = gsd_data.box[0]
ly = gsd_data.box[1]
fence = [[-lx/2, ly/2], [lx/2, ly/2], [lx/2, -ly/2], [-lx/2, -ly/2], [-lx/2, ly/2]]
fence = np.array(fence)
for i in range(10):
pos = gsd_data.read_a_frame(i)
posp = pos[:]+[0, gsd_data.box[1]]
posn = pos[:]-[0, gsd_data.box[1]]
posr = pos[:]+[gsd_data.box[0], 0]
posl = pos[:]-[gsd_data.box[0], 0]
pos_all = np.concatenate([pos, posp, posn, posr, posl], axis=0)
fig, ax = plt.subplots()
# ax.scatter(pos[:,0],pos[:,1],c='k')
ax.scatter(pos_all[:, 0], pos_all[:, 1], c='k')
ax.plot(fence[:, 0], fence[:, 1])
ax.plot()
ax.set_aspect('equal', 'box')
plt.show()
# def square_fence(self):
class merge_data:
R"""
import workflow_analysis as wa
for seed in range(9):
mg = wa.merge_data()
d3 = mg.read_txt(5208,seed)
d2 = mg.read_txt(5431,seed)
d1 = mg.read_txt(5430,seed)
d12 = mg.merge_txts(d1,d2)
d123 = mg.merge_txts(d12,d3)
png_filename = 'msd_chips_long_loglog_'+str(int(seed))+'.png'
mg.plot_msd_t_chips(d123,png_filename)
"""
def __init__(self):
pass
def read_txt(self, simu_index, seed):
str_index = str(int(simu_index))+'_'+str(int(seed))
prefix = "/home/remote/Downloads/"
folder = str_index+"/"
txt_filename = "msd_chips_long_loglog.txt"
filename = prefix+folder+txt_filename
record = np.loadtxt(filename)
return record
def merge_txts(self, record1, record2):
# np.unique(record1,axis=0)
record = np.concatenate((record1, record2))
return record
def plot_msd_t_chips(self, record_msd, png_filename='msd_chips_long_loglog.png'):
R"""
introduction:
input: 'txyz_stable.csv'
output: msd plot
"""
import matplotlib.pyplot as plt
plt.figure()
plt.loglog(record_msd[:, 0], record_msd[:, 1])
plt.title("Mean Squared Displacement")
plt.xlabel("$t$ (steps)")
plt.ylabel("MSD$(t)(\sigma^2)$ ")
plt.savefig(png_filename)
plt.close()
def generate_power_law_mix(self):
R"""
introduction:
ln(y) = k*ln(x), linear in loglog,
when -k > 1 , the cumulation is convergent series
return:
x,y
"""
x0 = np.linspace(0, 2, 10)
x = np.power(10, x0)
y0 = np.linspace(-5, -1, 10)
y = np.power(10, y0)
# xy = np.concatenate((x,y),axis=1)
xy = np.zeros((10, 2))
xy[:, 0] = x
xy[:, 1] = y
x0 = np.linspace(3, 5, 10)
x2 = np.power(10, x0)
y0 = np.linspace(-0.5, 0.5, 10)
y2 = np.power(10, y0)
xx = np.concatenate((x, x2))
yy = np.concatenate((y, y2))
xy = np.zeros((20, 2))
xy[:, 0] = xx
xy[:, 1] = yy
x0 = np.linspace(5, 6, 10)
x3 = np.power(10, x0)
y0 = np.linspace(0.5, 1.8, 10)
y3 = np.power(10, y0)
xx = np.concatenate((x, x2, x3))
yy = np.concatenate((y, y2, y3))
xy = np.zeros((30, 2))
xy[:, 0] = xx
xy[:, 1] = yy
return xy
class optimize_polyfit:
R"""
intro:
to fit the index of power law
exp:
import workflow_analysis as wa
wa.optimize_polyfit()
"""
def __init__(self):
prefix = "/home/remote/Downloads/4302_9/reference_occupation/waiting_time_split_2_halves/"
txt_filename = prefix+"list_waiting_time_1_bin.txt"
xy = np.loadtxt(txt_filename)
nums = 20
lnxy = np.log10(xy[:nums])
lnx = lnxy[:, 0]
lny = lnxy[:, 1]
z = np.polyfit(lnx, lny, 1)
k_str = str(np.around(z[0], 3))
print(z)
fig, ax = plt.subplots()
self.plot(ax, xy[:, 0], xy[:, 1])
lny_s = z[0]*lnx+z[1]
# y_s = np.exp(lny_s)
y_s = np.power(10, lny_s)
self.plot_dash(ax, xy[:nums, 0], y_s)
ax.annotate('k='+k_str, [10, 100], c='orange')
png_filename = prefix+"list_waiting_time_1_polyfit.png"
fig.savefig(png_filename)
# plt.show()
# scipy.optimize.curve_fit()
return z
def plot_dash(self, ax, x, y):
ax.loglog(x, y, dashes=[6, 2], c='orange')
def plot(self, ax, x, y):
ax.loglog(x, y)
R"""
Idea: the existence and advantages(speed and ratio); mechanism and universality of transformation
Show a single experiment/simulation:
Show the transition from hex to honeycomb;√
Show the class of phase transition( diffusionless transformation)(direct pin + interstitial filling)
Show the kinetics during the transition using the evolution of order parameters (psi3, the fraction of neighbor-changing events, smooth?);√
Show the kinetics during the transition using the evolution of configuration;?
Show the constrained diffusion mechanism(chain activation), and clips of displacement field or trajectory. arrow_circle color bar: the rank of nb change events among ids with long displacements. 4302_9_89-106(4chain√) 110-113(2chain) 1193-1195(diffusion√) 1361-1365(chain√)
Show the constrained diffusion mechanism(Wating time)(Apart from instanton, are vacancies in honeycomb transition activations?)method1: displacement & instanton;method2:vacancies located at traps or interstitials are activations, similar to spin-ups in the east model.
Show the constrained diffusion mechanism(dynamic heterogeneity)√
Show the pin mechanism√
Show a list of simulation:
Diagram of psi3 tuned by lcr and k;√
Show the difference between different conditions:
Direct trap VS dual lattice;√
Higher transformation ratio; faster transformation dynamics.
"""
class workflow_file_to_data:
def __init__(self):
pass
def search_and_get_single_final_frame(
self, table_name='pin_hex_to_honeycomb_part_klt_2m', lcr1=0.8, k1=300, kt1=1):
R"""
example:
import workflow_analysis as wa
wfr = wa.workflow_file_to_data()
list_lcr = np.linspace(0.77,0.84,8)#0.77
for lcr1 in list_lcr:
data = wfr.search_and_get_single_final_frame(lcr1=lcr1,k1=100)
print(lcr1)
print(np.shape(data))
"""
import data_retriever
se = data_retriever.search_engine_for_simulation_database()
"""se.get_table_names()"""
self.index1 = se.search_single_simu_by_lcr_k(table_name, lcr1, k1, kt1)
seed = 9
# | SimuIndex | HarmonicK | LinearCompressionRatio | kT | Psi3 | Psi6 | RandomSeed |
file_name = '/home/remote/Downloads/index'+str(self.index1)+'_'+str(seed)
data = np.loadtxt(file_name)
return data
def search_and_get_single_trajectory(
self, table_name='pin_hex_to_honeycomb_part_klt_2m', lcr1=0.8, k1=300, kt1=1):
import data_retriever
se = data_retriever.search_engine_for_simulation_database()
"""se.get_table_names()"""
index1 = se.search_single_simu_by_lcr_k(table_name, lcr1, k1, kt1)
seed = 9
# | SimuIndex | HarmonicK | LinearCompressionRatio | kT | Psi3 | Psi6 | RandomSeed |
import proceed_file as pf
gsd_data = pf.proceed_gsd_file(None, 'remote', index1, seed)
gsd_data.get_trajectory_data()
return gsd_data.txyz
def what_others(self):
import points_analysis_2D_freud as pa
import proceed_file as pf
gsd_data = pf.proceed_gsd_file(None, 'remote', 4302, 9)
gsd_data.get_trajectory_data()
record_energy = np.zeros((2001, 256, 3))
filename_trap = '/home/remote/hoomd-examples_0/testhoneycomb3-8-12-part1'
pos_traps = np.loadtxt(filename_trap)
for frame_id in [0, 1, 10, 100, 1000, 2000]:
extended_positions = gsd_data.get_extended_positions(frame_id)
points = gsd_data.txyz[frame_id, :, 0:2]
nps = len(points)
# filename_array = "/home/remote/Downloads/index4302_9"
en = pa.energy_computer()
en.define_system_manual(points, 300, 0.25, 15, pos_traps, 0.81, 700, 1)
en.compute_energy_particle_wise(extended_positions)
en.compute_energy(extended_positions)
print(frame_id)
print(en.energy_interaction)
print(en.energy_pin)
# record_energy[frame_id] = en.energy_inter_pin_mecha
print(frame_id)
print(np.sum(en.energy_inter_pin_mecha[:, 0]))
print(np.sum(en.energy_inter_pin_mecha[:, 1]))
"""record_energy[frame_id,0] = en.energy_pin
record_energy[frame_id,1] = en.energy_interaction
record_energy[frame_id,2] = en.energy_mechanical
print(frame_id)
print(en.energy_pin)
print(en.energy_interaction)
print(en.energy_mechanical)"""
"""print(en.energy_pin/nps)
print(en.energy_interaction/nps)
print(en.energy_mechanical/nps)""" # the mechanical energy is increasing?
# np.savetxt('/home/remote/Downloads/energy_index4302_9.txt',record_energy)
class show_final_frame:
def __init__(self):
pass
def list_tables(self):
import opertateOnMysql as osql
tables = osql.showTables()
for table in tables:
print(table[0]) # +'\n'
def search_lcr_k(self, lcr1=0.8, k1=300):
import opertateOnMysql as osql
table_name = 'pin_hex_to_honeycomb_klt_2m'
lcr_step = 0.001
lcr_min = lcr1 - 0.5*lcr_step
lcr_max = lcr1 + 0.5*lcr_step
cont = ' distinct SimuIndex ' # , RandomSeed
con = ' where HarmonicK='+str(int(k1)) + ' and LinearCompressionRatio >'+str(
lcr_min)+' and LinearCompressionRatio <'+str(lcr_max) # +\
# ' order by RandomSeed asc'
simu_index_seed = osql.getDataFromMysql(table_name=table_name,
search_condition=con, select_content=cont)
print(simu_index_seed)
t_filename = '/home/remote/hoomd-examples_0/testhoneycomb3-8-12'
import data_analysis_cycle as dac
for index1 in simu_index_seed:
dac.save_from_gsd(
simu_index=index1[0],
seed=9, final_cut=True, bond_plot=True, show_traps=True, trap_filename=t_filename,
trap_lcr=lcr1, account='remote')
return simu_index_seed
def draw_configurations(self, simu_index):
prefix = 's'
filename = prefix + 'school'
pa.static_points_analysis_2d()
def show_lcr_k(self):
R"""
import workflow_analysis as wa
sf = wa.show_final_frame()
lcrs,ks = sf.show_lcr_k()
for lcr1 in lcrs:
sf.search_lcr_k(lcr1[0],k1=60)#500
"""
import opertateOnMysql as osql
table_name = 'pin_hex_to_honeycomb_klt_2m'
cont = 'distinct LinearCompressionRatio'
con = ' order by LinearCompressionRatio asc' # where SimuIndex<4686
lcrs = osql.getDataFromMysql(table_name=table_name,
search_condition=con, select_content=cont)
cont = 'distinct HarmonicK'
con = ' order by HarmonicK asc'
ks = osql.getDataFromMysql(table_name=table_name,
search_condition=con, select_content=cont)
return lcrs, ks
class show_bonds_transition_from_hex_to_honeycomb:
def __init__(self):
"""import data_analysis_cycle as dac
daw = dac.data_analysis_workflow()
daw.get_bond_plot()"""
pass
def get_bond_plot(
self, directory, data_name=None, trap_filename=None, trap_lcr=None, io_only=False):
R"""
input:
directory from self.gsd_to_txyz
trap_filename:
'/home/remote/hoomd-examples_0/testhoneycomb3-8-12'
'/home/remote/hoomd-examples_0/testhoneycomb3-8-12-part1'
'/home/remote/hoomd-examples_0/testkagome3-11-6'
'/home/remote/hoomd-examples_0/testkagome_part3-11-6'
io_only: just return results, not proceeding data.
return:
a series of figures with particles(mark neighbor changes), bonds, traps
example:
import data_analysis_cycle as da
get_traj = da.data_analysis()
directory,data_name = get_traj.gsd_to_txyz('remote',4448,9,io_only=True)
get_traj.txyz_to_bond_plot(directory,data_name,
trap_filename='/home/remote/hoomd-examples_0/testkagome_part3-11-6',trap_lcr=0.89,
io_only=True)
"""
# write a routine class
import pandas as pd
file_txyz_stable = directory + 'txyz_stable.npy'
txyz_stable = np.load(file_txyz_stable)
dpa = pa.dynamic_points_analysis_2d(txyz_stable, mode='simu')
# particle id should be set as what in txyz_stable!
bond_cut_off = 6
if not io_only:
dpa.compute_nearest_neighbor_displacements(
csv_prefix=directory, bond_cut_off=bond_cut_off)
file_ts_id_dxy = directory + 'ts_id_dxy.csv'
ts_id_dxy = pd.read_csv(file_ts_id_dxy)
if_nb_change_int, n_particle_nb_stable = dpa.monitor_neighbor_change_event(
ts_id_dxy=ts_id_dxy,
csv_prefix=directory)
dpa.get_hist_neighbor_change_event(if_nb_change_int, n_particle_nb_stable, directory)
count_nb_change_event_rate = np.load(directory+'count_nb_change_event_rate.npy')
dpa.plot_hist_neighbor_change_event(count_nb_change_event_rate, directory)
"""
if_nb_change_int, n_particle_nb_stable, png_filename==dpa.monitor_neighbor_change_event(ts_id_dxy=ts_id_dxy,csv_prefix=directory)
dpa.plot_hist_neighbor_change_event(if_nb_change_int, n_particle_nb_stable, png_filename=)
"""
if not data_name is None:
file_list_sum_id_nb_stable = directory + 'list_sum_id_nb_stable.csv'
list_sum_id_nb_stable = pd.read_csv(file_list_sum_id_nb_stable)
# dpa.plot_bond_neighbor_change(nb_change=list_sum_id_nb_stable,data_name=data_name,prefix=directory,bond_cut_off=bond_cut_off,
# show_traps=True,trap_filename='/home/remote/hoomd-examples_0/testhoneycomb3-8-12',trap_lcr=0.79)
dpa.plot_bond_neighbor_change_oop(
data_name=data_name, prefix=directory, nb_change=list_sum_id_nb_stable,
bond_cut_off=bond_cut_off, trap_filename=trap_filename, trap_lcr=trap_lcr)
"""
dpa.plot_bond_neighbor_change_oop()
dpa.draw_bonds.draw_bonds_conditional_bond()
dpa.draw_bonds.plot_neighbor_change(txyz_stable,nb_change)
dpa.draw_bonds.plot_traps(trap_filename,LinearCompressionRatio)
"""
def get_bond_trap_plot(self):
R"""
fig3a large particle, small traps.
"""
index = [4620, 5228, 5288]
# seed = 9
lcr = [0.78, 0.78, 0.84]
# k = [500,60,60]
lim = [[0, 20], [-10, 10], [-10, 10]]
# '/media/tplab/93B8-B96D/lxt/Fig3_data/FIG3abc/'
prefix = '/media/remote/32E2D4CCE2D49607/file_lxt/Fig3_data/FIG3abc/'
trap_filename = prefix + 'testhoneycomb3-8-12' # .txt
for i in range(3):
filename = prefix + 'index'+str(index[i])+'_9' # .txt
save_filename = prefix + 'bond_index'+str(index[i])+'_9.pdf'
points = np.loadtxt(filename)
spa = pa.static_points_analysis_2d(points[:, :2], hide_figure=False)
spa.get_first_minima_ridge_length_distribution()
bpm = pa.bond_plot_module()
bpm.restrict_axis_property_relative(spa.points, '($\sigma$)')
list_bond_index = bpm.get_bonds_with_conditional_ridge_length(
spa.voronoi.ridge_length, spa.voronoi.ridge_points, spa.ridge_first_minima_left)
# color_name: https://www.cssportal.com/html-colors/x11-colors.php
bond_color = 'gold' # 'mediumseagreen'#'tan'#'bisque'#'gold'#'darkorange'
bpm.plot_points_with_given_bonds(
spa.points, list_bond_index, 200, bond_color, bond_color, bond_width=1)
bpm.plot_traps(
LinearCompressionRatio=lcr[i],
trap_filename=trap_filename, mode='array', trap_color='r', trap_size=10)
bpm.restrict_axis_limitation(lim[i], lim[i])
bpm.save_figure(png_filename=save_filename)
# spa.draw_bonds_conditional_ridge_oop(check=[0,spa.ridge_first_minima_left], png_filename=save_filename, xy_stable=spa.points, nb_change=None, x_unit='($\sigma$)',
# LinearCompressionRatio=lcr[i], trap_filename=trap_filename, axis_limit=lim[i])
def get_bond_trap_plot_unit(self):
R"""
fig3a large particle, small traps.
"""
list_index = [4620, 5228, 5288]
# seed = 9
lcr = [0.78, 0.78, 0.84]
prefix = '/home/remote/Downloads/' # '/media/tplab/93B8-B96D/lxt/Fig3_data/FIG3abc/'
prefix_trap = '/home/tplab/hoomd-examples_0/'
trap_filename = prefix_trap + 'testhoneycomb3-8-12-part1'
# 'testhoneycomb3-8-12'
# testhoneycomb3-8-12-part1.txt
for i in range(len(list_index)):
filename = prefix + 'index'+str(list_index[i])+'_9' # .txt
save_filename = prefix + 'bond_index'+str(list_index[i])+'_9.png'
points = np.loadtxt(filename)
spa = pa.static_points_analysis_2d(points[:, :2], hide_figure=False)
spa.get_first_minima_ridge_length_distribution()
bpm = pa.bond_plot_module()
bpm.restrict_axis_property_relative(spa.points, '($\sigma$)')
list_bond_index = bpm.get_bonds_with_conditional_ridge_length(
spa.voronoi.ridge_length, spa.voronoi.ridge_points, spa.ridge_first_minima_left)
# color_name: https://www.cssportal.com/html-colors/x11-colors.php
bond_color = 'mediumseagreen' # 'mediumseagreen'#'tan'#'bisque'#'gold'#'darkorange'
bpm.plot_points_with_given_bonds(
spa.points, list_bond_index, 80, bond_color, bond_color, bond_width=1)
bpm.plot_traps(
LinearCompressionRatio=lcr[i],
trap_filename=trap_filename, mode='array', trap_color='r', trap_size=10)
bpm.save_figure(png_filename=save_filename)
# spa.draw_bonds_conditional_ridge_oop(check=[0,spa.ridge_first_minima_left], png_filename=save_filename, xy_stable=spa.points, nb_change=None, x_unit='($\sigma$)',
# LinearCompressionRatio=lcr[i], trap_filename=trap_filename, axis_limit=lim[i])
def get_bond_trap_plot_param_compare(self, points, k1, trap_lcr=None, trap_type=True):
R"""
import workflow_analysis as wa
wfr = wa.workflow_file_to_data()
list_lcr = np.linspace(0.77,0.84,8)#0.77
k1=100
for lcr1 in list_lcr:
points = wfr.search_and_get_single_final_frame(lcr1=lcr1,k1=k1)
print(lcr1)
print(np.shape(points))
bth = wa.show_bonds_transition_from_hex_to_honeycomb()
bth.get_bond_trap_plot_param_compare(points,k1,lcr1)
"""
prefix = '/home/remote/Downloads/' # '/media/tplab/93B8-B96D/lxt/Fig3_data/FIG3abc/'
prefix_trap = '/home/tplab/hoomd-examples_0/'
if trap_type: # honeycomb_part
trap_filename = prefix_trap + 'testhoneycomb3-8-12-part1'
else:
trap_filename = prefix_trap + 'testhoneycomb3-8-12'
save_filename = prefix + 'bond_k'+str(int(k1))+'_lcr'+str(int(trap_lcr*100))+'.png'
spa = pa.static_points_analysis_2d(points[:, :2], hide_figure=False)
spa.get_first_minima_ridge_length_distribution()
bpm = pa.bond_plot_module()
bpm.restrict_axis_property_relative(spa.points, '($\sigma$)')
list_bond_index = bpm.get_bonds_with_conditional_ridge_length(
spa.voronoi.ridge_length, spa.voronoi.ridge_points, spa.ridge_first_minima_left)
# color_name: https://www.cssportal.com/html-colors/x11-colors.php
bond_color = 'mediumseagreen' # 'mediumseagreen'#'tan'#'bisque'#'gold'#'darkorange'
bpm.plot_points_with_given_bonds(
spa.points, list_bond_index, 80, bond_color, bond_color, bond_width=1)
bpm.plot_traps(LinearCompressionRatio=trap_lcr, trap_filename=trap_filename,
mode='array', trap_color='r', trap_size=10)
bpm.save_figure(png_filename=save_filename)
class show_bonds_transition_from_hex_to_kagome:
def __init__(self):
R"""
input:
directory from self.gsd_to_txyz
trap_filename:
'/home/remote/hoomd-examples_0/testhoneycomb3-8-12'
'/home/remote/hoomd-examples_0/testhoneycomb3-8-12-part1'
'/home/remote/hoomd-examples_0/testkagome3-11-6'
'/home/remote/hoomd-examples_0/testkagome_part3-11-6'
io_only: just return results, not proceeding data.
return:
a series of figures with particles(mark neighbor changes), bonds, traps
example:
import data_analysis_cycle as da
get_traj = da.data_analysis()
directory,data_name = get_traj.gsd_to_txyz('remote',4448,9,io_only=True)
get_traj.txyz_to_bond_plot(directory,data_name,
trap_filename='/home/remote/hoomd-examples_0/testkagome_part3-11-6',trap_lcr=0.89,
io_only=True)
"""
pass
def get_bond_trap_plot(self):
R"""
fig3a large particle, small traps.
"""
list_index = np.linspace(4436, 4445, 10, dtype=int)
# seed = 9
lcr = 0.88
# k = [500,60,60]
lim = [-20, 20]
# '/media/remote/32E2D4CCE2D49607/file_lxt/Fig3_data/FIG3abc/'#'/media/tplab/93B8-B96D/lxt/Fig3_data/FIG3abc/'
prefix = '/home/remote/Downloads/'
trap_filename = prefix + 'testkagome_part3-11-6' # .txt
for i in range(10):
filename = prefix + 'index'+str(list_index[i])+'_9' # .txt
save_filename = prefix + 'bond_index'+str(list_index[i])+'_9.png' # pdf'
points = np.loadtxt(filename)
spa = pa.static_points_analysis_2d(points[:, :2], hide_figure=False)
spa.get_first_minima_bond_length_distribution() # get_first_minima_ridge_length_distribution()
bpm = pa.bond_plot_module()
bpm.restrict_axis_property_relative(spa.points, '($\sigma$)')
list_bond_index = bpm.get_bonds_with_conditional_bond_length(
spa.bond_length, [0.9, spa.bond_first_minima_left])
# list_bond_index = bpm.get_bonds_with_conditional_ridge_length(spa.voronoi.ridge_length,spa.voronoi.ridge_points,spa.ridge_first_minima_left)
# color_name: https://www.cssportal.com/html-colors/x11-colors.php
bond_color = 'wheat' # 'gold'#'mediumseagreen'#'tan'#'bisque'#'gold'#'darkorange'
bpm.plot_points_with_given_bonds(
spa.points, list_bond_index, 100, bond_color, bond_color, bond_width=1) # 200 too large
bpm.plot_traps(LinearCompressionRatio=lcr, trap_filename=trap_filename,
mode='array', trap_color='r', trap_size=10)
bpm.restrict_axis_limitation(lim, lim)
bpm.save_figure(png_filename=save_filename)
# spa.draw_bonds_conditional_ridge_oop(check=[0,spa.ridge_first_minima_left], png_filename=save_filename, xy_stable=spa.points, nb_change=None, x_unit='($\sigma$)',
# LinearCompressionRatio=lcr[i], trap_filename=trap_filename, axis_limit=lim[i])
def get_bond_trap_plot_unit(self):
R"""
fig3a large particle, small traps.
"""
list_index = [4620, 5228, 5288]
# seed = 9
lcr = [0.78, 0.78, 0.84]
prefix = '/home/remote/Downloads/' # '/media/tplab/93B8-B96D/lxt/Fig3_data/FIG3abc/'
prefix_trap = '/home/tplab/hoomd-examples_0/'
trap_filename = prefix_trap + 'testhoneycomb3-8-12-part1'
# 'testhoneycomb3-8-12'
# testhoneycomb3-8-12-part1.txt
for i in range(len(list_index)):
filename = prefix + 'index'+str(list_index[i])+'_9' # .txt
save_filename = prefix + 'bond_index'+str(list_index[i])+'_9.png'
points = np.loadtxt(filename)
spa = pa.static_points_analysis_2d(points[:, :2], hide_figure=False)
spa.get_first_minima_ridge_length_distribution()
bpm = pa.bond_plot_module()
bpm.restrict_axis_property_relative(spa.points, '($\sigma$)')
list_bond_index = bpm.get_bonds_with_conditional_ridge_length(
spa.voronoi.ridge_length, spa.voronoi.ridge_points, spa.ridge_first_minima_left)
# color_name: https://www.cssportal.com/html-colors/x11-colors.php
bond_color = 'mediumseagreen' # 'mediumseagreen'#'tan'#'bisque'#'gold'#'darkorange'
bpm.plot_points_with_given_bonds(
spa.points, list_bond_index, 80, bond_color, bond_color, bond_width=1)
bpm.plot_traps(
LinearCompressionRatio=lcr[i],
trap_filename=trap_filename, mode='array', trap_color='r', trap_size=10)
bpm.save_figure(png_filename=save_filename)
# spa.draw_bonds_conditional_ridge_oop(check=[0,spa.ridge_first_minima_left], png_filename=save_filename, xy_stable=spa.points, nb_change=None, x_unit='($\sigma$)',
# LinearCompressionRatio=lcr[i], trap_filename=trap_filename, axis_limit=lim[i])
def get_bond_trap_plot_param_compare(self, points, k1, trap_lcr=None, trap_type=True):
R"""
import workflow_analysis as wa
wfr = wa.workflow_file_to_data()
list_lcr = np.linspace(0.77,0.84,8)#0.77
k1=100
for lcr1 in list_lcr:
points = wfr.search_and_get_single_final_frame(lcr1=lcr1,k1=k1)
print(lcr1)
print(np.shape(points))
bth = wa.show_bonds_transition_from_hex_to_honeycomb()
bth.get_bond_trap_plot_param_compare(points,k1,lcr1)
"""
prefix = '/home/remote/Downloads/' # '/media/tplab/93B8-B96D/lxt/Fig3_data/FIG3abc/'
prefix_trap = '/home/tplab/hoomd-examples_0/'
if trap_type: # honeycomb_part
trap_filename = prefix_trap + 'testhoneycomb3-8-12-part1'
else:
trap_filename = prefix_trap + 'testhoneycomb3-8-12'
save_filename = prefix + 'bond_k'+str(int(k1))+'_lcr'+str(int(trap_lcr*100))+'.png'
spa = pa.static_points_analysis_2d(points[:, :2], hide_figure=False)
spa.get_first_minima_ridge_length_distribution()
bpm = pa.bond_plot_module()
bpm.restrict_axis_property_relative(spa.points, '($\sigma$)')
list_bond_index = bpm.get_bonds_with_conditional_ridge_length(
spa.voronoi.ridge_length, spa.voronoi.ridge_points, spa.ridge_first_minima_left)
# color_name: https://www.cssportal.com/html-colors/x11-colors.php
bond_color = 'mediumseagreen' # 'mediumseagreen'#'tan'#'bisque'#'gold'#'darkorange'
bpm.plot_points_with_given_bonds(
spa.points, list_bond_index, 80, bond_color, bond_color, bond_width=1)
bpm.plot_traps(LinearCompressionRatio=trap_lcr, trap_filename=trap_filename,
mode='array', trap_color='r', trap_size=10)
bpm.save_figure(png_filename=save_filename)
class show_bond_image:
R"""
import workflow_analysis as wa
prefix_image='image_to_proceed/'
sti = wa.show_tuned_image(prefix_image,'DefaultImage_2.jpg')
sti.draw_tuned_image()
prefix = '/home/tplab/xiaotian_file/'
"""
def __init__(self, prefix, filename):
self.prefix = prefix
self.filename = filename
def read_image(self):
import particle_tracking as pt
import matplotlib.pyplot as plt
prefix = self.prefix # '/home/tplab/Downloads/20230321/'
image_filename = prefix+self.filename # 'DefaultImage_12.jpg' #'-' can not be recognized by plt.imread()!
spe = pt.particle_track()
spe.single_frame_particle_tracking(image_filename, D=11, minmass=400) # ,calibration=True
print(spe.xy)
spe.xy[:, 1] = -spe.xy[:, 1]
pixel2um = 3/32
points_um = spe.xy*pixel2um
np.savetxt(image_filename+"_um.txt", points_um)
spa = pa.static_points_analysis_2d(points=points_um)
hist_filename = image_filename+'hist.jpg'
spa.get_first_minima_bond_length_distribution(
lattice_constant=1.0, hist_cutoff=10.0, png_filename=hist_filename, x_unit='um')
check = [2, spa.bond_first_minima_left]
fig, ax = plt.subplots()
bpm = pa.bond_plot_module(fig, ax)
bpm.restrict_axis_property_relative('(sigma)')
bpm.restrict_axis_limitation([10, 50], [-60, -20])
list_bond_index = bpm.get_bonds_with_conditional_bond_length(spa.bond_length, check)
bond_filename = image_filename+'bond.jpg'
# p2d.bond_length[:,:2].astype(int)
bpm.plot_points_with_given_bonds(points_um, list_bond_index,
bond_color='k', particle_color='k')
bpm.save_figure(bond_filename)
def draw_bond_exp_hex(self):
R"""
20230113-defaultvideo-0.jpg
D=11,minmass=400
take as exp intial state hex
"""
import particle_tracking as pt
import matplotlib.pyplot as plt
prefix = self.prefix # '/home/tplab/Downloads/20230321/'
image_filename = prefix+self.filename # 'DefaultImage_12.jpg' #'-' can not be recognized by plt.imread()!
"""spe = pt.particle_track()
spe.single_frame_particle_tracking(image_filename,D=11,minmass=400)#,calibration=True
print(spe.xy)
spe.xy[:,1] = -spe.xy[:,1]
pixel2um = 3/32
points_um = spe.xy*pixel2um"""
points_um = np.loadtxt(image_filename+"_um.txt")
points_um2 = np.array(points_um)
points_um2[:, 0] = points_um[:, 1]
points_um2[:, 1] = points_um[:, 0]
spa = pa.static_points_analysis_2d(points=points_um2)
hist_filename = image_filename+'hist.jpg'
spa.get_first_minima_bond_length_distribution(
lattice_constant=1.0, hist_cutoff=10.0, png_filename=hist_filename, x_unit='um')
check = [2, spa.bond_first_minima_left]
fig, ax = plt.subplots()
# plot_scale_bar(self):
"""tx=-24.5
ty=12
span = 5
tstring = str(span)+' um'
zi=2
ax.text(tx,ty,tstring,horizontalalignment='center',zorder=zi)
down_ward = 0.2
height_bar = 1
lx=[tx-0.5*span,tx+0.5*span]
ly=[ty-down_ward-height_bar,ty-down_ward]
#ax.plot(lx,ly,c='k',linewidth=4,zorder=zi)
list_points_xy = np.array([[lx[0],ly[0]],[lx[1],ly[0]],[lx[1],ly[1]],[lx[0],ly[1]],[lx[0],ly[0]]])
ax.fill(list_points_xy[:,0],list_points_xy[:,1],facecolor='k',edgecolor='k',linewidth=0.01)
"""
bpm = pa.bond_plot_module(fig, ax)
bpm.restrict_axis_property_relative(hide_axis=True) # '($\mu m$)',
bpm.restrict_axis_limitation([-60, -20], [10, 50])
# add a bar
list_bond_index = bpm.get_bonds_with_conditional_bond_length(spa.bond_length, check)
bond_filename = image_filename+'bond.jpg'
# p2d.bond_length[:,:2].astype(int)
bpm.plot_points_with_given_bonds(
points_um2, list_bond_index, bond_color='k', particle_color='k')
bpm.plot_scale_bar()
bpm.save_figure(bond_filename)
def draw_tuned_image(self):
R"""
image_name,trap,D,minmass,hist_ctoff,bond_length,axis_limit
20230321-IMAGE12,honey_part,11,800,4.6*32/3,44.16,[400,800,700,250]
20230113-video8-2246,kagome_part,11,400,90,60,[100,900,900,100]
"""
import particle_tracking as pt
prefix = self.prefix # '/home/tplab/Downloads/20230321/'
image_filename = prefix+self.filename # 'DefaultImage_12.jpg'
spe = pt.particle_track()
spe.single_frame_particle_tracking(image_filename, D=11, minmass=400, axis_limit=[
100, 901, 100, 901]) # ,calibration=True
pixel2um = 3/32
um2pxiel = 1/pixel2um
spa = pa.static_points_analysis_2d(points=spe.xy)
hist_filename = image_filename+'hist_pix.jpg'
spa.get_first_minima_bond_length_distribution(
lattice_constant=1.0, hist_cutoff=120, png_filename=hist_filename, x_unit='pixel')
check = [2*um2pxiel, spa.bond_first_minima_left] # 44.16#spa.bond_first_minima_left
bond_filename = image_filename+'bond_pix.jpg'
# f0 = plt.imread(image_filename)
line = spa.draw_bonds_conditional_bond_for_image_oop(
spe.image, check=check, png_filename=bond_filename, x_unit='(pix)') # ,axis_limit=[400,800,250,700]
def draw_points_with_conditional_bond(
self, xy, bond_length=None, bond_length_limmit=[0.9, 2.0]):
R"""
Introduction:
copy from points_analysis_2D.bond_plot_module.draw_points_with_conditional_bond()
Parameters:
xy: particle positions of a frame, with no one removed.
bond_length: [particle_id1,particle_id2, bond_length] for txyz.
bond_length_limmit: limit the shortest and longest bond( in bond_length) to draw.
weight of shapes:
bond(blue line) < particles(black circle) < neighbor_change(orange circle) < traps(red cross)
0 1 2 3
Examples:
"""
if not (bond_length is None):
bond_check = tuple([bond_length_limmit[0], bond_length_limmit[1]])
# add lines for edges
for i in range(np.shape(bond_length)[0]):
if (bond_length[i, 2] > bond_check[0]) & (bond_length[i, 2] < bond_check[1]):
edge = tuple(bond_length[i, 0:2].astype(int))
pt1, pt2 = [self.points[edge[0]], self.points[edge[1]]]
line = plt.Polygon([pt1, pt2], closed=None, fill=None,
edgecolor='b', zorder=0) # ,lineStyle='dashed'
# self.ax.add_line(line)
return line
class show_waiting_time_brownian:
R"""
intro:
when a neighbor-changing event happened on the particle i,
search the first neighbor-changing event happening on the particle i,
and record the waiting time step. count the number of events for each time step.
parameters:
csv_file: [frame, particle_id, sum_id_neighbors, if_nb_change]
example:
import workflow_analysis as wa
wtb = wa.show_waiting_time_brownian()
wtb.plot_hist()
"""
def __init__(self):
pass
def compute(self):
import pandas as pd
prefix = '/home/remote/Downloads/4302_9/'
filename_csv = prefix+'list_sum_id_nb_stable.csv'
list_sum_id_nb_stable = pd.read_csv(filename_csv)
data_nb_changed = list_sum_id_nb_stable[list_sum_id_nb_stable['if_nb_change'] == True]
ids = data_nb_changed['particle_id'].values
ids = np.unique(ids)
ids_waiting_time = []
ids_waiting_time = np.array(ids_waiting_time)
for id in ids:
id_data_nb_changed = data_nb_changed[data_nb_changed['particle_id'] == id]
id_frames = id_data_nb_changed['frame'].values
id_frames_sorted = np.sort(id_frames)
id_waiting_time = id_frames_sorted[1:] - id_frames_sorted[:-1]
ids_waiting_time = np.concatenate((ids_waiting_time, id_waiting_time))
filename = prefix + 'list_ids_waiting_time.txt'
np.savetxt(filename, ids_waiting_time)
# pd.DataFrame.to_csv()
def plot_hist(self):
prefix = '/home/remote/Downloads/4302_9/brownian/'
filename = prefix + 'list_ids_waiting_time.txt'
ids_waiting_time = np.loadtxt(filename)
fig, ax = plt.subplots()
count_bins = ax.hist(ids_waiting_time, bins=500) # ,log=True,bins=20,range=[0,100]
# plt.show()
_count = count_bins[0]
_bins = count_bins[1]
fig2, ax2 = plt.subplots()
ax2.semilogy(_bins[1:], _count) # semilogy,loglog
ax2.set_xlabel('waiting time brownian(k steps)')
ax2.set_ylabel('count (1)')
png_filename = prefix + 'list_waiting_time_1_bin_brownian.png'
plt.savefig(png_filename)
txt_filename = prefix + 'list_waiting_time_1_bin_brownian.txt'
cb = np.zeros((_count.size, 2))
cb[:, 0] = _bins[1:]
cb[:, 1] = _count
np.savetxt(txt_filename, cb)
class show_waiting_time_dynamical_facilitation:
R"""
intro:
when a neighbor-changing event happened on the particle i,
search the first neighbor-changing event happening nearby(within rcut),
and record the waiting time step. count the number of events for each time step.
parameters:
csv_file: [frame, particle_id, sum_id_neighbors, if_nb_change]
(particle_ids are of txyz_stable, and edge_cut to nb_stable )
rcut = a*lcr*sqrt(3)*(1+10%). where a is lattice constant, lcr is linear compression ratio,
10% for thermal fluctuation.
example:
import workflow_analysis as wa
wtdf = wa.show_waiting_time_dynamical_facilitation()
rcut=3*0.81*1.73*1.1#a*lcr*sqrt(3)*(1+10%)
#fn = wtdf.compute(rcut)
prefix = '/home/remote/Downloads/4302_9/dynamical_facilitation_nb/'
fn=prefix +'list_waiting_time_dyfa_rcut4.62.txt'