-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetDataAndScatterOOP.py
168 lines (138 loc) · 5.94 KB
/
getDataAndScatterOOP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import matplotlib.pyplot as plt
import numpy as np
import opertateOnMysql as osql
class workflow_mysql_to_data:
R"""
Introduction:
table_name='depin_from_kagome_part_repeat'
simu_index | HarmonicK | LinearCompressionRatio | CoordinationNum4Rate
| CoordinationNum3Rate | RandomSeed | Psi6Global
FIGURE scatter LinearCompressionRatio vs KBT, Psi6 as value
Attributes:
Methods:
Example:
import getDataAndScatterOOP as sop
workflow = sop.workflow_mysql_to_data()
workflow.
"""
def __init__(self,table_name,workflow_name='depin_from_kagome_part_random'):
self.U_interaction=300*np.exp(-0.25)
self.set_parameters_k()
self.set_parameters_lcr()
self.table_name = table_name#'depin_from_kagome_part_repeat'
self.workflow_name = workflow_name
self.prefix_plot='/home/tplab/Downloads/'
self.set_plot_parameters()
def set_parameters_k(self,k1=100.0,k_step=100.0,k_end=1000.0):
#list of HarmonicK
self.k1=k1
self.k_step=k_step
self.k_end=k_end
self.num=(self.k_end-self.k1)/self.k_step+1
self.num=round(self.num)#get the num of repeat times
def set_parameters_lcr(self,lcr1=0.80,lcr_step=0.01,lcr_end=0.90):
self.lcr1=lcr1
self.lcr_step=lcr_step
self.lcr_end=lcr_end
self.lcr_num=(self.lcr_end-self.lcr1)/self.lcr_step+1
self.lcr_num=round(self.lcr_num)
def get_data_from_mysql(self):
self.record=np.zeros((self.lcr_num*self.num,8))
count=0
#scatter cycle
for i in np.linspace(1,self.num,self.num):
for j in np.linspace(1,self.lcr_num,self.lcr_num):
kset=self.k1+(i-1)*self.k_step
cond1=' where HarmonicK >'+str(kset-0.5*self.k_step)+' and HarmonicK <'+str(kset+0.5*self.k_step)
lcrset=self.lcr1+(j-1)*self.lcr_step
cond2=' and LinearCompressionRatio > '+str(lcrset-self.lcr_step*0.5)+' and LinearCompressionRatio <'+str(lcrset+self.lcr_step*0.5)
data=osql.getDataFromMysql(table_name=self.table_name,search_condition=cond1+cond2)
data=np.array(data)
m4=np.mean(data[:,3])
std4=np.std(data[:,3])
m3=np.mean(data[:,4])
std3=np.std(data[:,4])
m6=np.mean(data[:,6])
std6=np.std(data[:,6])
self.record[count,:]=[lcrset,kset,m4,std4,m3,std3,m6,std6]
count+=1
#print(data)
#print(m)
#print(std)
#rename "record"
self.data=self.record
def get_data_from_txt(self,filename):
self.data = np.loadtxt(filename)
def save_as_txt(self,save_file_name = "cairo_diagram_1_accurate"):
np.savetxt(save_file_name,self.data)
def set_plot_parameters(self,xlabel='Linear Compression Ratio (1)',ylabel='U trap (kBT)[Kagome_part]'):
self.xlabel = xlabel
self.ylabel = ylabel
def plot(self):
#plot
plt.figure()
#plot LCR VS K, CN4 as value
plt.scatter(self.data[:,0],self.data[:,1]*0.5,c=self.data[:,2])# LCR VS K, CN4 as value
#plt.show()
plt.title('LCR VS K, CN4 as value, Uparticle='+str(int(self.U_interaction)) )
plt.xlabel(self.xlabel)
plt.ylabel(self.ylabel)
plt.colorbar()
png_filename=self.prefix_plot+'LCR_VS_K_CN4_as_value_'+self.workflow_name
plt.savefig(png_filename)
plt.close()
plt.figure()
#plot LCR VS K, CN3 as value
plt.scatter(self.data[:,0],self.data[:,1]*0.5,c=self.data[:,4])# LCR VS K, CN3 as value
#plt.show()
plt.title('LCR VS K, CN3 as value, Uparticle='+str(int(self.U_interaction)) )
plt.xlabel(self.xlabel)
plt.ylabel(self.ylabel)
plt.colorbar()
png_filename=self.prefix_plot+'LCR_VS_K_CN3_as_value_'+self.workflow_name
plt.savefig(png_filename)
plt.close()
plt.figure()
#plot LCR VS K, Psi6 as value
plt.scatter(self.data[:,0],self.data[:,1]*0.5,c=self.data[:,6])# LCR VS K, Psi6 as value
#plt.show()
plt.title('LCR VS K, Psi6 as value, Uparticle='+str(int(self.U_interaction)) )
plt.xlabel(self.xlabel)
plt.ylabel(self.ylabel)
plt.colorbar()
png_filename=self.prefix_plot+'LCR_VS_K_Psi6_as_value_'+self.workflow_name
plt.savefig(png_filename)
plt.close()
plt.figure()
#plot LCR VS K, CN4std as value
plt.scatter(self.data[:,0],self.data[:,1]*0.5,c=self.data[:,3])# LCR VS K, CN4std as value
#plt.show()
plt.title('LCR VS K, CN4std as value, Uparticle='+str(int(self.U_interaction)) )
plt.xlabel(self.xlabel)
plt.ylabel(self.ylabel)
plt.colorbar()
png_filename=self.prefix_plot+'LCR_VS_K_CN4std_as_value_'+self.workflow_name
plt.savefig(png_filename)
plt.close()
plt.figure()
#plot LCR VS K, CN3std as value
plt.scatter(self.data[:,0],self.data[:,1]*0.5,c=self.data[:,5])# LCR VS K, CN3std as value
#plt.show()
plt.title('LCR VS K, CN3std as value, Uparticle='+str(int(self.U_interaction)) )
plt.xlabel(self.xlabel)
plt.ylabel(self.ylabel)
plt.colorbar()
png_filename=self.prefix_plot+'LCR_VS_K_CN3std_as_value_'+self.workflow_name
plt.savefig(png_filename)
plt.close()
plt.figure()
#plot LCR VS K, Psi6std as value
plt.scatter(self.data[:,0],self.data[:,1]*0.5,c=self.data[:,7])# LCR VS K, Psi6std as value
#plt.show()
plt.title('LCR VS K, Psi6std as value, Uparticle='+str(int(self.U_interaction)) )
plt.xlabel(self.xlabel)
plt.ylabel(self.ylabel)
plt.colorbar()
png_filename=self.prefix_plot+'LCR_VS_K_Psi6std_as_value_'+self.workflow_name
plt.savefig(png_filename)
plt.close()