-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_trans.py
49 lines (43 loc) · 2.86 KB
/
test_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from scipy import sparse as sp
from trans_model import trans_model as model
import argparse
import cPickle
DATASET = 'citeseer'
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', help = 'learning rate for supervised loss', type = float, default = 0.1)
parser.add_argument('--embedding_size', help = 'embedding dimensions', type = int, default = 50)
parser.add_argument('--window_size', help = 'window size in random walk sequences', type = int, default = 3)
parser.add_argument('--path_size', help = 'length of random walk sequences', type = int, default = 10)
parser.add_argument('--batch_size', help = 'batch size for supervised loss', type = int, default = 200)
parser.add_argument('--g_batch_size', help = 'batch size for graph context loss', type = int, default = 200)
parser.add_argument('--g_sample_size', help = 'batch size for label context loss', type = int, default = 100)
parser.add_argument('--neg_samp', help = 'negative sampling rate; zero means using softmax', type = int, default = 0)
parser.add_argument('--g_learning_rate', help = 'learning rate for unsupervised loss', type = float, default = 1e-2)
parser.add_argument('--model_file', help = 'filename for saving models', type = str, default = 'trans.model')
parser.add_argument('--use_feature', help = 'whether use input features', type = bool, default = True)
parser.add_argument('--update_emb', help = 'whether update embedding when optimizing supervised loss', type = bool, default = True)
parser.add_argument('--layer_loss', help = 'whether incur loss on hidden layers', type = bool, default = True)
args = parser.parse_args()
def comp_accu(tpy, ty):
import numpy as np
return (np.argmax(tpy, axis = 1) == np.argmax(ty, axis = 1)).sum() * 1.0 / tpy.shape[0]
# load the data: x, y, tx, ty, graph
NAMES = ['x', 'y', 'tx', 'ty', 'graph']
OBJECTS = []
for i in range(len(NAMES)):
OBJECTS.append(cPickle.load(open("data/trans.{}.{}".format(DATASET, NAMES[i]))))
x, y, tx, ty, graph = tuple(OBJECTS)
m = model(args) # initialize the model
m.add_data(x, y, graph) # add data
m.build() # build the model
m.init_train(init_iter_label = 2000, init_iter_graph = 70) # pre-training
iter_cnt, max_accu = 0, 0
while True:
m.step_train(max_iter = 1, iter_graph = 0, iter_inst = 1, iter_label = 0) # perform a training step
tpy = m.predict(tx) # predict the dev set
accu = comp_accu(tpy, ty) # compute the accuracy on the dev set
print iter_cnt, accu, max_accu
iter_cnt += 1
if accu > max_accu:
m.store_params() # store the model if better result is obtained
max_accu = max(max_accu, accu)