-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
151 lines (107 loc) · 5.81 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import lasagne
from theano import sparse
import numpy as np
import theano
import theano.tensor as T
EXP_SOFTMAX = True
class DenseLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_units, W = lasagne.init.GlorotUniform(),
b = lasagne.init.Constant(0.), nonlinearity = lasagne.nonlinearities.rectify,
**kwargs):
super(DenseLayer, self).__init__(incoming, **kwargs)
self.nonlinearity = (nonlinearities.identity if nonlinearity is None
else nonlinearity)
self.num_units = num_units
num_inputs = int(np.prod(self.input_shape[1:]))
self.W = self.add_param(W, (num_inputs, num_units), name="W")
if b is None:
self.b = None
else:
self.b = self.add_param(b, (num_units,), name="b",
regularizable=False)
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.num_units)
def get_output_for(self, input, **kwargs):
if input.ndim > 2:
# if the input has more than two dimensions, flatten it into a
# batch of feature vectors.
input = input.flatten(2)
activation = T.dot(input, self.W)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
if not EXP_SOFTMAX or self.nonlinearity != lasagne.nonlinearities.softmax:
return self.nonlinearity(activation)
else:
return T.exp(activation) / (T.exp(activation).sum(1, keepdims = True))
class SparseLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_units, W = lasagne.init.GlorotUniform(), b = lasagne.init.Constant(0.), nonlinearity = lasagne.nonlinearities.rectify, **kwargs):
super(SparseLayer, self).__init__(incoming, **kwargs)
self.num_units = num_units
self.nonlinearity = nonlinearity
num_inputs = int(np.prod(self.input_shape[1:]))
self.W = self.add_param(W, (num_inputs, num_units), name="W")
if b is None:
self.b = None
else:
self.b = self.add_param(b, (num_units,), name="b", regularizable=False)
def get_output_for(self, input, **kwargs):
act = sparse.basic.structured_dot(input, self.W)
if self.b is not None:
act += self.b.dimshuffle('x', 0)
if not EXP_SOFTMAX or self.nonlinearity != lasagne.nonlinearities.softmax:
return self.nonlinearity(act)
else:
return T.exp(act) / (T.exp(act).sum(1, keepdims = True))
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.num_units)
class HybridLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, num_units, W1 = lasagne.init.GlorotUniform(), W2 = lasagne.init.GlorotUniform(), b = lasagne.init.Constant(0.), nonlinearity = lasagne.nonlinearities.rectify, **kwargs):
super(HybridLayer, self).__init__(incomings, **kwargs)
self.num_units = num_units
self.nonlinearity = nonlinearity
num_inputs_1 = self.input_shapes[0][1]
num_inputs_2 = self.input_shapes[1][1]
self.W1 = self.add_param(W1, (num_inputs_1, num_units), name = "W1")
self.W2 = self.add_param(W2, (num_inputs_2, num_units), name = "W2")
self.b = self.add_param(b, (num_units, ), name = "b", regularizable = False)
def get_output_for(self, inputs, **kwargs):
act = sparse.basic.structured_dot(inputs[0], self.W1) + T.dot(inputs[1], self.W2) + self.b.dimshuffle('x', 0)
if EXP_SOFTMAX and self.nonlinearity == lasagne.nonlinearities.softmax:
return T.exp(act) / (T.exp(act).sum(1, keepdims = True))
return self.nonlinearity(act)
def get_output_shape_for(self, input_shapes):
return (input_shapes[0][0], self.num_units)
class EntropyLayer(lasagne.layers.Layer):
def __init__(self, incoming, constW, **kwargs):
super(EntropyLayer, self).__init__(incoming, **kwargs)
self.constW = constW
def get_output_for(self, input, **kwargs):
return T.reshape(T.dot(input, self.constW), (input.shape[0] * input.shape[1] * input.shape[1], 1))
def get_output_shape_for(self, input_shape):
if input_shape[0] is None or input_shape[1] is None: return (None, 1)
return (input_shape[0] * input_shape[1] * input_shape[1], 1)
class TensorLayer(lasagne.layers.Layer):
def __init__(self, incoming, num_units, V = lasagne.init.GlorotUniform(), W = lasagne.init.GlorotUniform(), b = lasagne.init.Constant(0.), nonlinearity = lasagne.nonlinearities.rectify, **kwargs):
super(TensorLayer, self).__init__(incoming, **kwargs)
self.num_units = num_units
self.nonlinearity = nonlinearity
num_inputs = self.input_shape[1]
self.V = self.add_param(V, (self.num_units, num_inputs, num_inputs), name = "V")
self.W = self.add_param(W, (num_inputs, self.num_units), name = "W")
self.b = self.add_param(b, (self.num_units, ), name = "b")
def get_output_for(self, input, **kwargs):
act = T.batched_dot(T.tensordot(input, self.V, axes = [1, 2]), input) + T.dot(input, self.W) + self.b.dimshuffle('x', 0)
return self.nonlinearity(act)
def get_output_shape_for(self, input_shape):
return (input_shape[0], self.num_units)
class DotLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, **kwargs):
super(DotLayer, self).__init__(incomings, **kwargs)
def get_output_for(self, inputs, **kwargs):
return T.sum(inputs[0] * inputs[1], axis = 1)
def get_output_shape_for(self, input_shapes):
return (input_shapes[0][0], )
class SigmoidLogLayer(lasagne.layers.Layer):
def get_output_for(self, input, **kwargs):
# return T.log(lasagne.nonlinearities.sigmoid(input))
return lasagne.nonlinearities.sigmoid(input)