-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack2.py
385 lines (335 loc) · 16.6 KB
/
track2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# limit the number of cpus used by high performance libraries
import os
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
sys.path.insert(0, './yolov5')
from yolov5.models.experimental import attempt_load
from yolov5.utils.downloads import attempt_download
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.datasets import LoadImages, LoadStreams
from yolov5.utils.general import LOGGER, check_img_size, non_max_suppression, scale_coords, check_imshow, xyxy2xywh
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
###new
import face_recognition
import mysql.connector
import numpy as np
def face_distance(face_encodings, face_to_compare):
if len(face_encodings) == 0:
return np.empty((0))
return np.linalg.norm(face_encodings - face_to_compare, axis=1)
def compare_faces(known_face_encodings, face_encoding_to_check, tolerance):
a = face_distance(known_face_encodings, face_encoding_to_check)
if np.amin(a) <= tolerance: # if same face in faces_merge database
return np.argmin(a) #get the min index
return False # didn't find
def get_data(records,indexs):
data = []
for index in indexs:
tmp = [records[index][2],records[index][3],records[index][4]]
data.append(tmp)
return data
def merge_data(mydb,mycursor,records,index,face_encoding):
origin_feature = records[index][1].split(',')
count = records[index][2]
for i in range(len(origin_feature)):
origin_feature[i] = float(origin_feature[i])
arr = np.array(origin_feature)
merge_feature = (arr * count + face_encoding) / (count + 1)
feature = face_encoding_to_feature(merge_feature)
sql = "update faces_merged set features = \'" + feature + "\' where id = " + str(index)
mycursor.execute(sql)
sql = "update faces_merged set count = \'" + str(count + 1) + "\' where id = " + str(index)
mycursor.execute(sql)
mydb.commit()
def face_encoding_to_feature(face_encoding):
feature = np.array2string(face_encoding, formatter={'float_kind':lambda x: "%.18f" % x}).replace('\n','').replace(' ',',')
feature = feature[1:]
feature = feature[:-1]
return feature
def store_to_merge_database(mydb,mycursor,face_encoding):
mycursor.execute('SELECT MAX(id) FROM faces_merged;')
max = mycursor.fetchall()
max = max[0][0]
if max == None: #if no data
max = -1
sql = "insert into faces_merged (id, features, count) values (%s, %s, %s)"
feature = face_encoding_to_feature(face_encoding)
index = max + 1
count = 1
val = (index,feature,count,)
mycursor.execute(sql, val)
print(mycursor.rowcount, "record inserted.")
mydb.commit()
return index
def check_merge(mydb,mycursor,face_encoding):
sql = "select * from faces_merged"
mycursor.execute(sql)
records = mycursor.fetchall()
mydb.commit()
known_face_encodings = []
for row in records:
tmp = row[1].split(',')
for i in range(len(tmp)):
tmp[i] = float(tmp[i])
arr = np.array(tmp)
known_face_encodings.append(arr) #feature
if known_face_encodings:
index = compare_faces(known_face_encodings,face_encoding,tolerance = 0.4) # the min distance in faces_merged
if index != False: # have same face in database
merge_data(mydb,mycursor,records,index,face_encoding)
return index
index = store_to_merge_database(mydb,mycursor,face_encoding)
return index
def store_to_database(average_encoded_dict,id_time,source):
mydb = mysql.connector.connect(
host = 'localhost',
user = 'root',
password = '',
database = 'facedb'
)
mycursor = mydb.cursor()
mycursor.execute('SELECT MAX(id) FROM faces;')
max = mycursor.fetchall()
max = max[0][0] #get the max id
if max == None: #if no data
max = 0
#新增資料
sql = "insert into faces (id, features, start_time, end_time, device, merged_id) values (%s, %s, %s, %s, %s, %s)"
vals = []
for key,value in average_encoded_dict.items():
feature = np.array2string(value, formatter={'float_kind':lambda x: "%.18f" % x}).replace('\n','').replace(' ',',')
feature = feature[1:]
feature = feature[:-1]
check = check_merge(mydb,mycursor,value)
val = (max + int(key),feature,id_time[key][0],id_time[key][1],source,int(check))
vals.append(val)
mycursor.executemany(sql, vals)
print(mycursor.rowcount, "record inserted.")
mydb.commit()
def detect(opt):
out, source, yolo_weights, deep_sort_weights, show_vid, save_vid, save_txt, imgsz, evaluate, half = \
opt.output, opt.source, opt.yolo_weights, opt.deep_sort_weights, opt.show_vid, opt.save_vid, \
opt.save_txt, opt.imgsz, opt.evaluate, opt.half
webcam = source == '0' or source.startswith(
'rtsp') or source.startswith('http') or source.endswith('.txt')
print(save_vid)
# initialize deepsort
cfg = get_config()
cfg.merge_from_file(opt.config_deepsort)
attempt_download(deep_sort_weights, repo='mikel-brostrom/Yolov5_DeepSort_Pytorch')
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
# Initialize
device = select_device(opt.device)
half &= device.type != 'cpu' # half precision only supported on CUDA
# The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
# its own .txt file. Hence, in that case, the output folder is not restored
if not evaluate:
if os.path.exists(out):
pass
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Load model
device = select_device(device)
model = DetectMultiBackend(opt.yolo_weights, device=device, dnn=opt.dnn)
stride, names, pt, jit, onnx = model.stride, model.names, model.pt, model.jit, model.onnx
imgsz = check_img_size(imgsz, s=stride) # check image size
# Half
half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt:
model.model.half() if half else model.model.float()
# Set Dataloader
vid_path, vid_writer = None, None
# Check if environment supports image displays
if show_vid:
show_vid = check_imshow()
# Dataloader
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
save_path = str(Path(out))
# extract what is in between the last '/' and last '.'
txt_file_name = source.split('/')[-1].split('.')[0]
txt_path = str(Path(out)) + '/' + txt_file_name + '.txt'
if pt and device.type != 'cpu':
model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.model.parameters()))) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
#python track2.py --source walk.mp4 --yolo_weights yolov5/weights/crowdhuman_yolov5m.pt --classes 0
encoded_faces = {}
id_time = {}
for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset):
seconds = frame_idx / vid_cap.get(cv2.CAP_PROP_FPS)
# if frame_idx > 262:
# break
t1 = time_sync()
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if opt.visualize else False
pred = model(img, augment=opt.augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det)
dt[2] += time_sync() - t3
# Process detections
for i, det in enumerate(pred): # detections per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
s += '%gx%g ' % img.shape[2:] # print string
save_path = str(Path(out) / Path(p).name)
annotator = Annotator(im0, line_width=2, pil=not ascii)
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
xywhs = xyxy2xywh(det[:, 0:4])
confs = det[:, 4]
clss = det[:, 5]
# pass detections to deepsort
outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
# draw boxes for visualization
if len(outputs) > 0:
##recognize##
face_locations = face_recognition.face_locations(im0,model="cnn")
face_encodings = face_recognition.face_encodings(im0, face_locations)
##recognize##
for j, (output, conf) in enumerate(zip(outputs, confs)):
bboxes = output[0:4] #left up right down
id = output[4]
##add new dict key##
if id not in encoded_faces:
encoded_faces[id] = []
id_time[id] = [seconds,0] #start_time,end_time
else:
id_time[id][1] = seconds
##add new dict key##
##add value to key##
i = 0
for top, right, bottom, left in face_locations:
if(left > bboxes[0] and top > bboxes[1] and right < bboxes[2] and bottom < bboxes[3]):
encoded_faces[id].append(face_encodings[i])
i += 1
##add value to key##
cls = output[5]
c = int(cls) # integer class
label = f'{id} {names[c]} {conf:.2f}'
annotator.box_label(bboxes, label, color=colors(c, True))
# if save_txt:
# # to MOT format
# bbox_left = output[0]
# bbox_top = output[1]
# bbox_w = output[2] - output[0]
# bbox_h = output[3] - output[1]
# # Write MOT compliant results to file
# with open(txt_path, 'a') as f:
# f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left,
# bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format
else:
deepsort.increment_ages()
# Print time (inference-only)
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
# Stream results
im0 = annotator.result()
if show_vid:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_vid:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
##get average_dict
average_encoded_dict = {}
for key,value in encoded_faces.items():
average_encoded_dict[key] = []
average_encoded_dict[key] = sum(value) / len(value)
store_to_database(average_encoded_dict,id_time,source)
# # Print results
# t = tuple(x / seen * 1E3 for x in dt) # speeds per image
# LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
# if save_txt or save_vid:
# s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
# LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
# if platform == 'darwin': # MacOS
# os.system('open ' + save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--yolo_weights', nargs='+', type=str, default='yolov5l.pt', help='model.pt path(s)')
parser.add_argument('--deep_sort_weights', type=str, default='deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7', help='ckpt.t7 path')
# file/folder, 0 for webcam
parser.add_argument('--source', type=str, default='0', help='source')
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--show-vid', action='store_true', help='display tracking video results')
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
parser.add_argument('--save-txt', action='store_true', help='save MOT compliant results to *.txt')
# class 0 is person, 1 is bycicle, 2 is car... 79 is oven
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 16 17')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--evaluate', action='store_true', help='augmented inference')
parser.add_argument("--config_deepsort", type=str, default="deep_sort_pytorch/configs/deep_sort.yaml")
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detection per image')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
with torch.no_grad():
detect(opt)