-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput.py
74 lines (71 loc) · 2.29 KB
/
input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import face_recognition
import mysql.connector
import argparse
import numpy as np
import json
def face_distance(face_encodings, face_to_compare):
if len(face_encodings) == 0:
return np.empty((0))
return np.linalg.norm(face_encodings - face_to_compare, axis=1)
def compare_faces(known_face_encodings, face_encoding_to_check):
a = face_distance(known_face_encodings, face_encoding_to_check)
return np.argmin(a) #get the min index
def get_match(match):
indexs = []
for i in range(len(match)):
if match[i] == True:
indexs.append(i)
return indexs
def get_data(records,index):
mydb = mysql.connector.connect(
host = 'localhost',
user = 'root',
password = '',
database = 'facedb'
)
mycursor = mydb.cursor()
sql = 'select * from faces where merged_id = ' + str(index[0])
mycursor.execute(sql)
records = mycursor.fetchall()
print(len(records))
data = []
for record in records:
tmp = [record[2],record[3],record[4]]
data.append(tmp)
return data
def find_database(face_encoding):
mydb = mysql.connector.connect(
host = 'localhost',
user = 'root',
password = '',
database = 'facedb'
)
mycursor = mydb.cursor()
sql = "select * from faces_merged"
mycursor.execute(sql)
records = mycursor.fetchall()
known_face_encodings = []
for row in records:
tmp = row[1].split(',')
for i in range(len(tmp)):
tmp[i] = float(tmp[i])
arr = np.array(tmp)
known_face_encodings.append(arr) #feature
match = face_recognition.compare_faces(known_face_encodings,face_encoding,tolerance = 0.4)
index = get_match(match)
data = get_data(records,index)
#data = [records[match][2],records[match][3],records[match][4]]
return data
def encode(opt):
file_name = opt.image
image = face_recognition.load_image_file(file_name)
face_encoding = face_recognition.face_encodings(image)[0]
return face_encoding
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image', type=str, default='test.PNG', help='image')
opt = parser.parse_args()
face_encoding = encode(opt)
data = find_database(face_encoding)
print(json.dumps(data))
#return data