forked from ukyg9e5r6k7gubiekd6/gpsd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbsd_base64.c
185 lines (163 loc) · 7.33 KB
/
bsd_base64.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* $OpenBSD: base64.c,v 1.3 1997/11/08 20:46:55 deraadt Exp $ */
/*
* Copyright (c) 1996 by Internet Software Consortium.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS
* ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE
* CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
/*
* Portions Copyright (c) 1995 by International Business Machines, Inc.
*
* International Business Machines, Inc. (hereinafter called IBM) grants
* permission under its copyrights to use, copy, modify, and distribute this
* Software with or without fee, provided that the above copyright notice and
* all paragraphs of this notice appear in all copies, and that the name of IBM
* not be used in connection with the marketing of any product incorporating
* the Software or modifications thereof, without specific, written prior
* permission.
*
* To the extent it has a right to do so, IBM grants an immunity from suit
* under its patents, if any, for the use, sale or manufacture of products to
* the extent that such products are used for performing Domain Name System
* dynamic updates in TCP/IP networks by means of the Software. No immunity is
* granted for any product per se or for any other function of any product.
*
* THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL,
* DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE, EVEN
* IF IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.
*/
#include "gpsd_config.h" /* must be before all includes */
#include <stdlib.h>
#include <sys/types.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "gpsd.h" /* we only need the prototype */
static const char Base64[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const char Pad64 = '=';
/* (From RFC1521 and draft-ietf-dnssec-secext-03.txt)
The following encoding technique is taken from RFC 1521 by Borenstein
and Freed. It is reproduced here in a slightly edited form for
convenience.
A 65-character subset of US-ASCII is used, enabling 6 bits to be
represented per printable character. (The extra 65th character, "=",
is used to signify a special processing function.)
The encoding process represents 24-bit groups of input bits as output
strings of 4 encoded characters. Proceeding from left to right, a
24-bit input group is formed by concatenating 3 8-bit input groups.
These 24 bits are then treated as 4 concatenated 6-bit groups, each
of which is translated into a single digit in the base64 alphabet.
Each 6-bit group is used as an index into an array of 64 printable
characters. The character referenced by the index is placed in the
output string.
Table 1: The Base64 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y
Special processing is performed if fewer than 24 bits are available
at the end of the data being encoded. A full encoding quantum is
always completed at the end of a quantity. When fewer than 24 input
bits are available in an input group, zero bits are added (on the
right) to form an integral number of 6-bit groups. Padding at the
end of the data is performed using the '=' character.
Since all base64 input is an integral number of octets, only the
-------------------------------------------------
following cases can arise:
(1) the final quantum of encoding input is an integral
multiple of 24 bits; here, the final unit of encoded
output will be an integral multiple of 4 characters
with no "=" padding,
(2) the final quantum of encoding input is exactly 8 bits;
here, the final unit of encoded output will be two
characters followed by two "=" padding characters, or
(3) the final quantum of encoding input is exactly 16 bits;
here, the final unit of encoded output will be three
characters followed by one "=" padding character.
*/
int
b64_ntop(unsigned char const *src, size_t srclength, char *target,
size_t targsize)
{
size_t datalength = 0;
unsigned char input[3];
unsigned char output[4];
while (2 < srclength) {
input[0] = *src++;
input[1] = *src++;
input[2] = *src++;
srclength -= 3;
output[0] = input[0] >> 2;
output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
output[3] = input[2] & 0x3f;
assert(output[0] < 64);
assert(output[1] < 64);
assert(output[2] < 64);
assert(output[3] < 64);
if (datalength + 4 > targsize)
return (-1);
target[datalength++] = Base64[output[0]];
target[datalength++] = Base64[output[1]];
target[datalength++] = Base64[output[2]];
target[datalength++] = Base64[output[3]];
}
/* Now we worry about padding. */
if (0 != srclength) {
size_t i;
/* Get what's left. */
input[0] = input[1] = input[2] = '\0';
for (i = 0; i < srclength; i++)
input[i] = *src++;
output[0] = input[0] >> 2;
output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
assert(output[0] < 64);
assert(output[1] < 64);
assert(output[2] < 64);
if (datalength + 4 > targsize)
return (-1);
target[datalength++] = Base64[output[0]];
target[datalength++] = Base64[output[1]];
if (srclength == 1)
target[datalength++] = Pad64;
else
target[datalength++] = Base64[output[2]];
target[datalength++] = Pad64;
}
if (datalength >= targsize)
return (-1);
target[datalength] = '\0'; /* Returned value doesn't count \0. */
return (datalength);
}
/* end */