-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfingertip_finder.py
150 lines (115 loc) · 4.92 KB
/
fingertip_finder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import torch
import torchvision.models as models
import torch.nn as nn
import matplotlib.pyplot as plt
import cv2
import evaluator
import finger_evaluator
from PIL import Image
from dataloader import unnormalize
from torchvision import transforms
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Device:', device)
totensor = transforms.ToTensor()
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def get_model(n):
model = models.resnet18(pretrained=True)
if n == 1:
model.fc = nn.Linear(512, 480*640)
model.load_state_dict(torch.load(
'saved_models/resnet18_notile_combined.model', map_location=torch.device(device)))
elif n == 2:
model.fc = nn.Linear(512, 2)
model.load_state_dict(torch.load(
'saved_models/resnet18_notile_full_finger_MSE.model', map_location=torch.device(device)))
model = model.to(device)
return model
model1 = get_model(1)
print(model1.fc)
model2 = get_model(2)
def find_fingertip(img):
if img.shape != (480, 640, 3):
img = cv2.resize(img, (640, 480), interpolation=cv2.INTER_AREA)
_, output = get_img_output(img, model1, device)
# If no hand detected
if np.mean(np.array(output)) == 0:
return img, (0,0)
crop_img, anchor = crop_image(img, output)
mask_shape = crop_img.shape
pad_img = pad_image(crop_img)
pad_shape = pad_img.shape
pad_img = Image.fromarray(pad_img)
sq_img, finger_coor = get_finger_coor(pad_img, model2, device)
''' Uncomment to save images within the pipeline
cv2.imwrite("Graphics/Demo/input.jpg", img)
coor = (int(round(finger_coor[0])),int(round(finger_coor[1])))
sq_img = cv2.resize(np.array(pad_img), (99, 99), interpolation=cv2.INTER_AREA)
sq_write_image = cv2.circle(sq_img, coor, 4, (255, 0, 0), -1)
cv2.imwrite(f"Graphics/Demo/model2.jpg", sq_write_image)
'''
# Reverse what we did to the image to get the actualy finger coordinate
finger_coor_x = (pad_shape[0] * finger_coor[0]) / 99
finger_coor_y = (pad_shape[1] * finger_coor[1]) / 99
finger_prediction = (finger_coor_x + anchor[0], finger_coor_y + anchor[1])
finger_prediction = np.rint((finger_prediction[0], finger_prediction[1]))
finger_prediction = (int(finger_prediction[0]), int(finger_prediction[1]))
# Add the labels to the images
prediction_image = cv2.rectangle(
img, (anchor[0], anchor[1]), (anchor[2], anchor[3]), (0, 255, 0), 1)
# Uncomment to save model 1 output
#cv2.imwrite(f"Graphics/Demo/model1.jpg", img)
prediction_image = cv2.circle(
prediction_image, finger_prediction, 4, (255, 0, 0), -1)
return prediction_image, finger_prediction
# take rgb image (in numpy array form) and return model output
def get_img_output(img, model, device='cuda'):
assert img.shape == (480, 640, 3)
no_aug_transforms = transforms.Compose((totensor, normalize))
img = no_aug_transforms(img)
# adding a batch dimension (batch of one)
img = torch.unsqueeze(img, 0)
x_out = evaluator.get_inference_output(model, img, device)
x_out = torch.where(x_out > 0, 1, 0).cpu()
# reshape model output to have shape (batch_size, channel, height, width)
x_out = x_out.reshape(1, 480, 640)
# take image and model output out of batch dimension
img, prediction = img[0], x_out[0]
return (img, prediction)
def get_finger_coor(img, model, device='cuda'):
# Perform data augmentation and get the prediction
no_aug_transforms = transforms.Compose(
(transforms.Resize(99), np.array, totensor, normalize))
img = no_aug_transforms(img)
test_img = torch.unsqueeze(img, 0)
finger_coor = finger_evaluator.get_inference_output(
model2, test_img, device)
return img, (finger_coor[0, 0].item(), finger_coor[0, 1].item())
def crop_image(img, mask):
# Grab the bounding box for the hand
coors = np.where(mask == 1)
ymin = np.max([np.min(coors[0])-90, 0])
ymax = np.min([np.max(coors[0])+60, 480])
xmin = np.max([np.min(coors[1])-60, 0])
xmax = np.min([np.max(coors[1])+60, 640])
# Crop the image and mask to the bounding box
img = img[ymin:ymax, xmin:xmax]
return img, (xmin, ymin, xmax, ymax)
def pad_image(img):
# Add padding to the right or bottom of the image to make it a square
larger_dim = np.max(img.shape)
padded_image = np.zeros((larger_dim, larger_dim, 3), dtype=np.uint8)
padded_image[0:img.shape[0], 0:img.shape[1], :] = img
return padded_image
def array_threshold(img):
img[img > 0] = 1
return img
def test():
#img, finger_prediction = find_fingertip(
# np.array(Image.open('training_data/color/color_img0025479.jpg')))
img, finger_prediction = find_fingertip(
np.array(Image.open('training_data/IPN_Hand/color/1CM1_1_R_#217_000300.jpg')))
plt.title(f"Predicted {finger_prediction}")
plt.axis("off")
plt.imshow(img)
plt.show()