Skip to content

Latest commit

 

History

History
251 lines (197 loc) · 5.81 KB

File metadata and controls

251 lines (197 loc) · 5.81 KB

English Version

题目描述

树可以看成是一个连通且 无环 的 无向 图。

给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 aibi 之间存在一条边。

请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的边。

 

示例 1:

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]

示例 2:

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]

 

提示:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ai < bi <= edges.length
  • ai != bi
  • edges 中无重复元素
  • 给定的图是连通的 

解法

并查集。

模板 1——朴素并查集:

# 初始化,p存储每个点的父节点
p = list(range(n))

# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        # 路径压缩
        p[x] = find(p[x])
    return p[x]

# 合并a和b所在的两个集合
p[find(a)] = find(b)

模板 2——维护 size 的并查集:

# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n

# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        # 路径压缩
        p[x] = find(p[x])
    return p[x]

# 合并a和b所在的两个集合
if find(a) != find(b):
    size[find(b)] += size[find(a)]
    p[find(a)] = find(b)

模板 3——维护到祖宗节点距离的并查集:

# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n

# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        t = find(p[x])
        d[x] += d[p[x]]
        p[x] = t
    return p[x]

# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance

对于本题,先遍历所有的边,如果边的两个节点已经属于同个集合,说明两个节点已经相连,若再将这条件加入集合中,就会出现环,因此可以直接返回这条边。

Python3

class Solution:
    def findRedundantConnection(self, edges: List[List[int]]) -> List[int]:
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        p = list(range(1010))
        for a, b in edges:
            if find(a) == find(b):
                return [a, b]
            p[find(a)] = find(b)
        return []

Java

class Solution {
    private int[] p;

    public int[] findRedundantConnection(int[][] edges) {
        p = new int[1010];
        for (int i = 0; i < p.length; ++i) {
            p[i] = i;
        }
        for (int[] e : edges) {
            int a = e[0], b = e[1];
            if (find(a) == find(b)) {
                return e;
            }
            p[find(a)] = find(b);
        }
        return null;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    vector<int> p;

    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        p.resize(1010);
        for (int i = 0; i < p.size(); ++i) p[i] = i;
        for (auto& e : edges)
        {
            int a = e[0], b = e[1];
            if (find(a) == find(b)) return e;
            p[find(a)] = find(b);
        }
        return {};
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Go

func findRedundantConnection(edges [][]int) []int {
	p := make([]int, 1010)
	for i := range p {
		p[i] = i
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	for _, e := range edges {
		a, b := e[0], e[1]
		if find(a) == find(b) {
			return e
		}
		p[find(a)] = find(b)
	}
	return []int{}
}

JavaScript

/**
 * @param {number[][]} edges
 * @return {number[]}
 */
var findRedundantConnection = function (edges) {
    let p = Array.from({ length: 1010 }, (_, i) => i);
    function find(x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
    for (let [a, b] of edges) {
        if (find(a) == find(b)) {
            return [a, b];
        }
        p[find(a)] = find(b);
    }
    return [];
};

...