Skip to content

Latest commit

 

History

History
274 lines (243 loc) · 8.59 KB

File metadata and controls

274 lines (243 loc) · 8.59 KB

中文文档

Description

You are given an m x n grid grid of values 0, 1, or 2, where:

  • each 0 marks an empty land that you can pass by freely,
  • each 1 marks a building that you cannot pass through, and
  • each 2 marks an obstacle that you cannot pass through.

You want to build a house on an empty land that reaches all buildings in the shortest total travel distance. You can only move up, down, left, and right.

Return the shortest travel distance for such a house. If it is not possible to build such a house according to the above rules, return -1.

The total travel distance is the sum of the distances between the houses of the friends and the meeting point.

The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

 

Example 1:

Input: grid = [[1,0,2,0,1],[0,0,0,0,0],[0,0,1,0,0]]
Output: 7
Explanation: Given three buildings at (0,0), (0,4), (2,2), and an obstacle at (0,2).
The point (1,2) is an ideal empty land to build a house, as the total travel distance of 3+3+1=7 is minimal.
So return 7.

Example 2:

Input: grid = [[1,0]]
Output: 1

Example 3:

Input: grid = [[1]]
Output: -1

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 50
  • grid[i][j] is either 0, 1, or 2.
  • There will be at least one building in the grid.

Solutions

BFS.

Python3

class Solution:
    def shortestDistance(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        q = deque()
        total = 0
        cnt = [[0] * n for _ in range(m)]
        dist = [[0] * n for _ in range(m)]
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 1:
                    total += 1
                    q.append((i, j))
                    d = 0
                    vis = set()
                    while q:
                        d += 1
                        for _ in range(len(q), 0, -1):
                            r, c = q.popleft()
                            for a, b in [[0, 1], [0, -1], [1, 0], [-1, 0]]:
                                x, y = r + a, c + b
                                if 0 <= x < m and 0 <= y < n and grid[x][y] == 0 and (x, y) not in vis:
                                    cnt[x][y] += 1
                                    dist[x][y] += d
                                    q.append((x, y))
                                    vis.add((x, y))
        ans = float('inf')
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 0 and cnt[i][j] == total:
                    ans = min(ans, dist[i][j])
        return -1 if ans == float('inf') else ans

Java

class Solution {
    public int shortestDistance(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        Deque<int[]> q = new LinkedList<>();
        int total = 0;
        int[][] cnt = new int[m][n];
        int[][] dist = new int[m][n];
        int[] dirs = {-1, 0, 1, 0, -1};
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 1) {
                    ++total;
                    q.offer(new int[]{i, j});
                    int d = 0;
                    boolean[][] vis = new boolean[m][n];
                    while (!q.isEmpty()) {
                        ++d;
                        for (int k = q.size(); k > 0; --k) {
                            int[] p = q.poll();
                            for (int l = 0; l < 4; ++l) {
                                int x = p[0] + dirs[l];
                                int y = p[1] + dirs[l + 1];
                                if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0 && !vis[x][y]) {
                                    ++cnt[x][y];
                                    dist[x][y] += d;
                                    q.offer(new int[]{x, y});
                                    vis[x][y] = true;
                                }
                            }
                        }
                    }
                }
            }
        }
        int ans = Integer.MAX_VALUE;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == 0 && cnt[i][j] == total) {
                    ans = Math.min(ans, dist[i][j]);
                }
            }
        }
        return ans == Integer.MAX_VALUE ? -1 : ans;
    }
}

C++

class Solution {
public:
    int shortestDistance(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        typedef pair<int, int> pii;
        queue<pii> q;
        int total = 0;
        vector<vector<int>> cnt(m, vector<int>(n));
        vector<vector<int>> dist(m, vector<int>(n));
        vector<int> dirs = {-1, 0, 1, 0, -1};
        for (int i = 0; i < m; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                if (grid[i][j] == 1)
                {
                    ++total;
                    q.push({i, j});
                    vector<vector<bool>> vis(m, vector<bool>(n));
                    int d = 0;
                    while (!q.empty())
                    {
                        ++d;
                        for (int k = q.size(); k > 0; --k)
                        {
                            auto p = q.front();
                            q.pop();
                            for (int l = 0; l < 4; ++l)
                            {
                                int x = p.first + dirs[l];
                                int y = p.second + dirs[l + 1];
                                if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0 && !vis[x][y])
                                {
                                    ++cnt[x][y];
                                    dist[x][y] += d;
                                    q.push({x, y});
                                    vis[x][y] = true;
                                }
                            }
                        }
                    }
                }
            }
        }
        int ans = INT_MAX;
        for (int i = 0; i < m; ++i)
            for (int j = 0; j < n; ++j)
                if (grid[i][j] == 0 && cnt[i][j] == total)
                    ans = min(ans, dist[i][j]);
        return ans == INT_MAX ? -1 : ans;
    }
};

Go

func shortestDistance(grid [][]int) int {
	m, n := len(grid), len(grid[0])
	var q [][]int
	total := 0
	cnt := make([][]int, m)
	dist := make([][]int, m)
	for i := range cnt {
		cnt[i] = make([]int, n)
		dist[i] = make([]int, n)
	}
	dirs := []int{-1, 0, 1, 0, -1}
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			if grid[i][j] == 1 {
				total++
				q = append(q, []int{i, j})
				vis := make([]bool, m*n)
				d := 0
				for len(q) > 0 {
					d++
					for k := len(q); k > 0; k-- {
						p := q[0]
						q = q[1:]
						for l := 0; l < 4; l++ {
							x, y := p[0]+dirs[l], p[1]+dirs[l+1]
							if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 0 && !vis[x*n+y] {
								cnt[x][y]++
								dist[x][y] += d
								q = append(q, []int{x, y})
								vis[x*n+y] = true
							}
						}
					}
				}
			}
		}
	}

	ans := math.MaxInt32
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			if grid[i][j] == 0 && cnt[i][j] == total {
				if ans > dist[i][j] {
					ans = dist[i][j]
				}
			}
		}
	}
	if ans == math.MaxInt32 {
		return -1
	}
	return ans
}

...