Skip to content

Latest commit

 

History

History
297 lines (239 loc) · 6.49 KB

File metadata and controls

297 lines (239 loc) · 6.49 KB

English Version

题目描述

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在  32 位 整数范围内。

不要使用除法,且在 O(n) 时间复杂度内完成此题。

 

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

 

提示:

  • 2 <= nums.length <= 105
  • -30 <= nums[i] <= 30
  • 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在  32 位 整数范围内

 

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组不被视为额外空间。)

解法

暴力:

正常计算除自身之外的乘积。

PRODUCT_EXCEPT_SELF(A)
    n = A.length
    let r[0..n]be a new array
    for i = 0 in n
        s = 1
        for j = 0 in n 
            if j == i
                continue
            s *= A[j]
        r[i] = s
    return r

左右乘积:

分别从左至右,从右至左累乘一次即可。

PRODUCT_EXCEPT_SELF(A)
    n = A.length
    let r[0..n]be a new array
    p = 1
    q = 1
    for i = 0 in n 
        r[i] = p
        p *= A[i]
    for i = n - 1 in 0 downto 
        r[i] *= q
        q *= A[i]
    return r

可行性说明:

nums = [1, 2, 3, 4] 为例。

r[i] 的数值由 nums[0..i - 1] 的数值乘积所决定。在遍历结束后,最后一个元素得到了最终结果(因为累乘了前方所有数值)。

nums: [1, 2, 3, 4]
   r: [1, 1, 2, 6]
   p: [1, 2, 6, 24]

而其他位置的数值,距离结果还差什么呢,那就是相对自身,后方所有数值的乘积,于是就有了第二次,从后往前的过程。

nums: [1, 2, 3, 4]
   r: [24, 12, 8, 6]
   p: [24, 24, 12, 4]

Python3

class Solution:
    def productExceptSelf(self, nums: List[int]) -> List[int]:
        n = len(nums)
        ans = [1] * n
        left = right = 1
        for i in range(n):
            ans[i] = left
            left *= nums[i]
        for i in range(n - 1, -1, -1):
            ans[i] *= right
            right *= nums[i]
        return ans

Java

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int n = nums.length;
        int[] ans = new int[n];
        for (int i = 0, left = 1; i < n; ++i) {
            ans[i] = left;
            left *= nums[i];
        }
        for (int i = n - 1, right = 1; i >= 0; --i) {
            ans[i] *= right;
            right *= nums[i];
        }
        return ans;
    }
}

JavaScript

/**
 * @param {number[]} nums
 * @return {number[]}
 */
var productExceptSelf = function (nums) {
    const n = nums.length;
    let ans = new Array(n);
    for (let i = 0, left = 1; i < n; ++i) {
        ans[i] = left;
        left *= nums[i];
    }
    for (let i = n - 1, right = 1; i >= 0; --i) {
        ans[i] *= right;
        right *= nums[i];
    }
    return ans;
};

TypeScript

function productExceptSelf(nums: number[]): number[] {
    const n = nums.length;
    let ans = new Array(n);
    for (let i = 0, left = 1; i < n; ++i) {
        ans[i] = left;
        left *= nums[i];
    }
    for (let i = n - 1, right = 1; i >= 0; --i) {
        ans[i] *= right;
        right *= nums[i];
    }
    return ans;
}
function productExceptSelf(nums: number[]): number[] {
    return nums.map((_, i) =>
        nums.reduce((pre, val, j) => pre * (i === j ? 1 : val), 1),
    );
}

Go

利用前缀和思想,分别求出 i 左右两侧的乘积

func productExceptSelf(nums []int) []int {
	n := len(nums)

	l := make([]int, n)
	l[0] = 1
	for i := 1; i < n; i++ {
		l[i] = l[i-1] * nums[i-1]
	}

	r := make([]int, n)
	r[n-1] = 1
	for i := n - 2; i >= 0; i-- {
		r[i] = r[i+1] * nums[i+1]
	}

	ans := make([]int, n)
	for i := 0; i < n; i++ {
		ans[i] = l[i] * r[i]
	}

	return ans
}

C++

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {
        int n = nums.size();
        vector<int> ans(n);
        for (int i = 0, left = 1; i < n; ++i)
        {
            ans[i] = left;
            left *= nums[i];
        }
        for (int i = n - 1, right = 1; i >= 0; --i)
        {
            ans[i] *= right;
            right *= nums[i];
        }
        return ans;
    }
};

Rust

impl Solution {
    pub fn product_except_self(nums: Vec<i32>) -> Vec<i32> {
        let mut dp_left = vec![1_i32; nums.len()];
        let mut dp_right = vec![1_i32; nums.len()];
        for i in 1..nums.len() {
            dp_left[i] = dp_left[i - 1] * nums[i - 1];
        }
        for i in (0..(nums.len() - 1)).rev() {
            dp_right[i] = dp_right[i + 1] * nums[i + 1];
        }
        dp_left
            .into_iter()
            .enumerate()
            .map(|(i, x)| x * dp_right[i])
            .collect()
    }
}
impl Solution {
    pub fn product_except_self(nums: Vec<i32>) -> Vec<i32> {
        let n = nums.len();
        let mut l = 1;
        let mut r = 1;
        let mut res = vec![0; n];
        for i in 0..n {
            res[i] = l;
            l *= nums[i];
        }
        for i in (0..n).rev() {
            res[i] *= r;
            r *= nums[i];
        }
        res
    }
}

...