Given an integer array nums
, find a contiguous non-empty subarray within the array that has the largest product, and return the product.
The test cases are generated so that the answer will fit in a 32-bit integer.
A subarray is a contiguous subsequence of the array.
Example 1:
Input: nums = [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6.
Example 2:
Input: nums = [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
Constraints:
1 <= nums.length <= 2 * 104
-10 <= nums[i] <= 10
- The product of any prefix or suffix of
nums
is guaranteed to fit in a 32-bit integer.
class Solution:
def maxProduct(self, nums: List[int]) -> int:
maxf = minf = res = nums[0]
for num in nums[1:]:
m, n = maxf, minf
maxf = max(num, m * num, n * num)
minf = min(num, m * num, n * num)
res = max(res, maxf)
return res
class Solution {
public int maxProduct(int[] nums) {
int maxf = nums[0], minf = nums[0], res = nums[0];
for (int i = 1; i < nums.length; ++i) {
int m = maxf, n = minf;
maxf = Math.max(nums[i], Math.max(m * nums[i], n * nums[i]));
minf = Math.min(nums[i], Math.min(m * nums[i], n * nums[i]));
res = Math.max(res, maxf);
}
return res;
}
}
function maxProduct(nums: number[]): number {
let n = nums.length;
let preMax = nums[0],
preMin = nums[0],
ans = nums[0];
for (let i = 1; i < n; ++i) {
let cur = nums[i];
let x = preMax,
y = preMin;
preMax = Math.max(x * cur, y * cur, cur);
preMin = Math.min(x * cur, y * cur, cur);
ans = Math.max(preMax, ans);
}
return ans;
}
public class Solution {
public int MaxProduct(int[] nums) {
int maxf = nums[0], minf = nums[0], res = nums[0];
for (int i = 1; i < nums.Length; ++i)
{
int m = maxf, n = minf;
maxf = Math.Max(nums[i], Math.Max(nums[i] * m, nums[i] * n));
minf = Math.Min(nums[i], Math.Min(nums[i] * m, nums[i] * n));
res = Math.Max(res, maxf);
}
return res;
}
}
class Solution {
public:
int maxProduct(vector<int>& nums) {
int maxf = nums[0], minf = nums[0], res = nums[0];
for (int i = 1; i < nums.size(); ++i) {
int m = maxf, n = minf;
maxf = max(nums[i], max(nums[i] * m, nums[i] * n));
minf = min(nums[i], min(nums[i] * m, nums[i] * n));
res = max(res, maxf);
}
return res;
}
};
func maxProduct(nums []int) int {
maxf, minf, res := nums[0], nums[0], nums[0]
for i := 1; i < len(nums); i++ {
m, n := maxf, minf
maxf = max(nums[i], max(nums[i]*m, nums[i]*n))
minf = min(nums[i], min(nums[i]*m, nums[i]*n))
res = max(res, maxf)
}
return res
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
impl Solution {
pub fn max_product(nums: Vec<i32>) -> i32 {
let mut min = nums[0];
let mut max = nums[0];
let mut res = nums[0];
for &num in nums.iter().skip(1) {
let (pre_min, pre_max) = (min, max);
min = num.min(num * pre_min).min(num * pre_max);
max = num.max(num * pre_min).max(num * pre_max);
res = res.max(max);
}
res
}
}