请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现
LRUCache
类:LRUCache(int capacity)
以 正整数 作为容量capacity
初始化 LRU 缓存int get(int key)
如果关键字key
存在于缓存中,则返回关键字的值,否则返回-1
。void put(int key, int value)
如果关键字key
已经存在,则变更其数据值value
;如果不存在,则向缓存中插入该组key-value
。如果插入操作导致关键字数量超过capacity
,则应该 逐出 最久未使用的关键字。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入 ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]] 输出 [null, null, null, 1, null, -1, null, -1, 3, 4] 解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是 {1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回 1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3} lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3); // 返回 3 lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
- 最多调用
2 * 105
次get
和put
“哈希表 + 双向链表”实现。其中:
- 双向链表按照被使用的顺序存储 kv 键值对,靠近头部的 kv 键值对是最近使用的,而靠近尾部的键值对是最久未使用的。
- 哈希表通过缓存的 key 映射到双向链表中的位置。我们可以在
O(1)
时间内定位到缓存的 key 所对应的 value 在链表中的位置。
对于 get
操作,判断 key 是否存在哈希表中:
- 若不存在,返回 -1
- 若存在,则 key 对应的节点 node 是最近使用的节点。将该节点移动到双向链表的头部,最后返回该节点的值即可。
对于 put
操作,同样先判断 key 是否存在哈希表中:
- 若不存在,则创建一个新的 node 节点,放入哈希表中。然后在双向链表的头部添加该节点。接着判断双向链表节点数是否超过 capacity。若超过,则删除双向链表的尾部节点,以及在哈希表中对应的项。
- 若存在,则更新 node 节点的值,然后该节点移动到双向链表的头部。
双向链表节点(哈希表的 value)的结构如下:
class Node {
int key;
int value;
Node prev;
Node next;
Node() {
}
Node(int key, int value) {
this.key = key;
this.value = value;
}
}
你可能会问,哈希表的 value 为何还要存放 key?
这是因为,双向链表有一个删除尾节点的操作。我们定位到双向链表的尾节点,在链表中删除之后,还要找到该尾节点在哈希表中的位置,因此需要根据 value 中存放的 key,定位到哈希表的数据项,然后将其删除。
class Node:
def __init__(self, key=0, val=0):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.cache = {}
self.head = Node()
self.tail = Node()
self.capacity = capacity
self.size = 0
self.head.next = self.tail
self.tail.prev = self.head
def get(self, key: int) -> int:
if key not in self.cache:
return -1
node = self.cache[key]
self.move_to_head(node)
return node.val
def put(self, key: int, value: int) -> None:
if key in self.cache:
node = self.cache[key]
node.val = value
self.move_to_head(node)
else:
node = Node(key, value)
self.cache[key] = node
self.add_to_head(node)
self.size += 1
if self.size > self.capacity:
node = self.remove_tail()
self.cache.pop(node.key)
self.size -= 1
def move_to_head(self, node):
self.remove_node(node)
self.add_to_head(node)
def remove_node(self, node):
node.prev.next = node.next
node.next.prev = node.prev
def add_to_head(self, node):
node.next = self.head.next
node.prev = self.head
self.head.next = node
node.next.prev = node
def remove_tail(self):
node = self.tail.prev
self.remove_node(node)
return node
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
class Node {
int key;
int val;
Node prev;
Node next;
Node() {
}
Node(int key, int val) {
this.key = key;
this.val = val;
}
}
class LRUCache {
private Map<Integer, Node> cache = new HashMap<>();
private Node head = new Node();
private Node tail = new Node();
private int capacity;
private int size;
public LRUCache(int capacity) {
this.capacity = capacity;
head.next = tail;
tail.prev = head;
}
public int get(int key) {
if (!cache.containsKey(key)) {
return -1;
}
Node node = cache.get(key);
moveToHead(node);
return node.val;
}
public void put(int key, int value) {
if (cache.containsKey(key)) {
Node node = cache.get(key);
node.val = value;
moveToHead(node);
} else {
Node node = new Node(key, value);
cache.put(key, node);
addToHead(node);
++size;
if (size > capacity) {
node = removeTail();
cache.remove(node.key);
--size;
}
}
}
private void moveToHead(Node node) {
removeNode(node);
addToHead(node);
}
private void removeNode(Node node) {
node.prev.next = node.next;
node.next.prev = node.prev;
}
private void addToHead(Node node) {
node.next = head.next;
node.prev = head;
head.next = node;
node.next.prev = node;
}
private Node removeTail() {
Node node = tail.prev;
removeNode(node);
return node;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
use std::cell::RefCell;
use std::collections::hash_map::HashMap;
use std::rc::Rc;
struct Node {
key: i32,
value: i32,
prev: Option<Rc<RefCell<Node>>>,
next: Option<Rc<RefCell<Node>>>,
}
impl Node {
#[inline]
fn new(key: i32, value: i32) -> Node {
Node {
key,
value,
prev: None,
next: None,
}
}
}
struct LRUCache {
capacity: usize,
cache: HashMap<i32, Rc<RefCell<Node>>>,
head: Option<Rc<RefCell<Node>>>,
tail: Option<Rc<RefCell<Node>>>,
}
impl LRUCache {
fn new(capacity: i32) -> Self {
LRUCache {
capacity: capacity as usize,
cache: HashMap::new(),
head: None,
tail: None,
}
}
fn get(&mut self, key: i32) -> i32 {
if let Some(node) = self.cache.get(&key) {
let node = Rc::clone(node);
self.remove(&node);
self.push_front(&node);
let value = node.borrow().value;
value
} else {
-1
}
}
fn put(&mut self, key: i32, value: i32) {
if let Some(node) = self.cache.get(&key) {
let node = Rc::clone(node);
node.borrow_mut().value = value;
self.remove(&node);
self.push_front(&node);
} else {
let node = Rc::new(RefCell::new(Node::new(key, value)));
self.cache.insert(key, Rc::clone(&node));
self.push_front(&node);
if self.cache.len() > self.capacity {
if let Some(back) = self.pop_back() {
self.cache.remove(&back.borrow().key);
}
}
}
}
fn push_front(&mut self, node: &Rc<RefCell<Node>>) {
let mut node_borrow_mut = node.borrow_mut();
if let Some(head) = self.head.take() {
head.borrow_mut().prev = Some(Rc::clone(node));
node_borrow_mut.next = Some(head);
node_borrow_mut.prev = None;
self.head = Some(Rc::clone(node));
} else {
self.head = Some(Rc::clone(node));
self.tail = Some(Rc::clone(node));
}
}
fn remove(&mut self, node: &Rc<RefCell<Node>>) {
match (node.borrow().prev.as_ref(), node.borrow().next.as_ref()) {
(None, None) => {
self.head = None;
self.tail = None;
}
(None, Some(next)) => {
self.head = Some(Rc::clone(next));
next.borrow_mut().prev = None;
}
(Some(prev), None) => {
self.tail = Some(Rc::clone(prev));
prev.borrow_mut().next = None;
}
(Some(prev), Some(next)) => {
next.borrow_mut().prev = Some(Rc::clone(prev));
prev.borrow_mut().next = Some(Rc::clone(next));
}
}
}
fn pop_back(&mut self) -> Option<Rc<RefCell<Node>>> {
if let Some(tail) = self.tail.take() {
match tail.borrow().prev.as_ref() {
Some(prev) => {
prev.borrow_mut().next = None;
self.tail = Some(Rc::clone(prev));
}
None => {
self.head = None;
self.tail = None;
}
}
Some(tail)
} else {
None
}
}
}
type node struct {
key, val int
prev, next *node
}
type LRUCache struct {
capacity int
cache map[int]*node
head, tail *node
}
func Constructor(capacity int) LRUCache {
head := new(node)
tail := new(node)
head.next = tail
tail.prev = head
return LRUCache{
capacity: capacity,
cache: make(map[int]*node, capacity),
head: head,
tail: tail,
}
}
func (this *LRUCache) Get(key int) int {
n, ok := this.cache[key]
if !ok {
return -1
}
this.moveToFront(n)
return n.val
}
func (this *LRUCache) Put(key int, value int) {
n, ok := this.cache[key]
if ok {
n.val = value
this.moveToFront(n)
return
}
if len(this.cache) == this.capacity {
back := this.tail.prev
this.remove(back)
delete(this.cache, back.key)
}
n = &node{key: key, val: value}
this.pushFront(n)
this.cache[key] = n
}
func (this *LRUCache) moveToFront(n *node) {
this.remove(n)
this.pushFront(n)
}
func (this *LRUCache) remove(n *node) {
n.prev.next = n.next
n.next.prev = n.prev
n.prev = nil
n.next = nil
}
func (this *LRUCache) pushFront(n *node) {
n.prev = this.head
n.next = this.head.next
this.head.next.prev = n
this.head.next = n
}
struct Node {
int k;
int v;
Node* prev;
Node* next;
Node(): k(0), v(0), prev(nullptr), next(nullptr) {}
Node(int key, int val): k(key), v(val), prev(nullptr), next(nullptr) {}
};
class LRUCache {
public:
LRUCache(int capacity): cap(capacity), size(0) {
head = new Node();
tail = new Node();
head->next = tail;
tail->prev = head;
}
int get(int key) {
if (!cache.count(key)) return -1;
Node* node = cache[key];
moveToHead(node);
return node->v;
}
void put(int key, int value) {
if (cache.count(key))
{
Node* node = cache[key];
node->v = value;
moveToHead(node);
}
else
{
Node* node = new Node(key, value);
cache[key] = node;
addToHead(node);
++size;
if (size > cap)
{
node = removeTail();
cache.erase(node->k);
--size;
}
}
}
private:
unordered_map<int, Node*> cache;
Node* head;
Node* tail;
int cap;
int size;
void moveToHead(Node* node) {
removeNode(node);
addToHead(node);
}
void removeNode(Node* node) {
node->prev->next = node->next;
node->next->prev = node->prev;
}
void addToHead(Node* node) {
node->next = head->next;
node->prev = head;
head->next = node;
node->next->prev = node;
}
Node* removeTail() {
Node* node = tail->prev;
removeNode(node);
return node;
}
};
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache* obj = new LRUCache(capacity);
* int param_1 = obj->get(key);
* obj->put(key,value);
*/