Skip to content

Latest commit

 

History

History
564 lines (471 loc) · 14.1 KB

File metadata and controls

564 lines (471 loc) · 14.1 KB

English Version

题目描述

请你设计并实现一个满足  LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
  • LRUCache(int capacity)正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 getput 必须以 O(1) 的平均时间复杂度运行。

 

示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

 

提示:

  • 1 <= capacity <= 3000
  • 0 <= key <= 10000
  • 0 <= value <= 105
  • 最多调用 2 * 105getput

解法

“哈希表 + 双向链表”实现。其中:

  • 双向链表按照被使用的顺序存储 kv 键值对,靠近头部的 kv 键值对是最近使用的,而靠近尾部的键值对是最久未使用的。
  • 哈希表通过缓存的 key 映射到双向链表中的位置。我们可以在 O(1) 时间内定位到缓存的 key 所对应的 value 在链表中的位置。

对于 get 操作,判断 key 是否存在哈希表中:

  • 若不存在,返回 -1
  • 若存在,则 key 对应的节点 node 是最近使用的节点。将该节点移动到双向链表的头部,最后返回该节点的值即可。

对于 put 操作,同样先判断 key 是否存在哈希表中:

  • 若不存在,则创建一个新的 node 节点,放入哈希表中。然后在双向链表的头部添加该节点。接着判断双向链表节点数是否超过 capacity。若超过,则删除双向链表的尾部节点,以及在哈希表中对应的项。
  • 若存在,则更新 node 节点的值,然后该节点移动到双向链表的头部。

双向链表节点(哈希表的 value)的结构如下:

class Node {
	int key;
	int value;
	Node prev;
	Node next;
	Node() {

	}
	Node(int key, int value) {
		this.key = key;
		this.value = value;
	}
}

你可能会问,哈希表的 value 为何还要存放 key?

这是因为,双向链表有一个删除尾节点的操作。我们定位到双向链表的尾节点,在链表中删除之后,还要找到该尾节点在哈希表中的位置,因此需要根据 value 中存放的 key,定位到哈希表的数据项,然后将其删除。

Python3

class Node:
    def __init__(self, key=0, val=0):
        self.key = key
        self.val = val
        self.prev = None
        self.next = None


class LRUCache:

    def __init__(self, capacity: int):
        self.cache = {}
        self.head = Node()
        self.tail = Node()
        self.capacity = capacity
        self.size = 0
        self.head.next = self.tail
        self.tail.prev = self.head

    def get(self, key: int) -> int:
        if key not in self.cache:
            return -1
        node = self.cache[key]
        self.move_to_head(node)
        return node.val

    def put(self, key: int, value: int) -> None:
        if key in self.cache:
            node = self.cache[key]
            node.val = value
            self.move_to_head(node)
        else:
            node = Node(key, value)
            self.cache[key] = node
            self.add_to_head(node)
            self.size += 1
            if self.size > self.capacity:
                node = self.remove_tail()
                self.cache.pop(node.key)
                self.size -= 1

    def move_to_head(self, node):
        self.remove_node(node)
        self.add_to_head(node)

    def remove_node(self, node):
        node.prev.next = node.next
        node.next.prev = node.prev

    def add_to_head(self, node):
        node.next = self.head.next
        node.prev = self.head
        self.head.next = node
        node.next.prev = node

    def remove_tail(self):
        node = self.tail.prev
        self.remove_node(node)
        return node


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

Java

class Node {
    int key;
    int val;
    Node prev;
    Node next;

    Node() {

    }

    Node(int key, int val) {
        this.key = key;
        this.val = val;
    }
}

class LRUCache {
    private Map<Integer, Node> cache = new HashMap<>();
    private Node head = new Node();
    private Node tail = new Node();
    private int capacity;
    private int size;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        head.next = tail;
        tail.prev = head;
    }
    
    public int get(int key) {
        if (!cache.containsKey(key)) {
            return -1;
        }
        Node node = cache.get(key);
        moveToHead(node);
        return node.val;
    }
    
    public void put(int key, int value) {
        if (cache.containsKey(key)) {
            Node node = cache.get(key);
            node.val = value;
            moveToHead(node);
        } else {
            Node node = new Node(key, value);
            cache.put(key, node);
            addToHead(node);
            ++size;
            if (size > capacity) {
                node = removeTail();
                cache.remove(node.key);
                --size;
            }
        }
    }

    private void moveToHead(Node node) {
        removeNode(node);
        addToHead(node);
    }

    private void removeNode(Node node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    private void addToHead(Node node) {
        node.next = head.next;
        node.prev = head;
        head.next = node;
        node.next.prev = node;
    }

    private Node removeTail() {
        Node node = tail.prev;
        removeNode(node);
        return node;
    }
}

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache obj = new LRUCache(capacity);
 * int param_1 = obj.get(key);
 * obj.put(key,value);
 */

Rust

use std::cell::RefCell;
use std::collections::hash_map::HashMap;
use std::rc::Rc;

struct Node {
    key: i32,
    value: i32,
    prev: Option<Rc<RefCell<Node>>>,
    next: Option<Rc<RefCell<Node>>>,
}

impl Node {
    #[inline]
    fn new(key: i32, value: i32) -> Node {
        Node {
            key,
            value,
            prev: None,
            next: None,
        }
    }
}

struct LRUCache {
    capacity: usize,
    cache: HashMap<i32, Rc<RefCell<Node>>>,
    head: Option<Rc<RefCell<Node>>>,
    tail: Option<Rc<RefCell<Node>>>,
}

impl LRUCache {
    fn new(capacity: i32) -> Self {
        LRUCache {
            capacity: capacity as usize,
            cache: HashMap::new(),
            head: None,
            tail: None,
        }
    }

    fn get(&mut self, key: i32) -> i32 {
        if let Some(node) = self.cache.get(&key) {
            let node = Rc::clone(node);
            self.remove(&node);
            self.push_front(&node);
            let value = node.borrow().value;
            value
        } else {
            -1
        }
    }

    fn put(&mut self, key: i32, value: i32) {
        if let Some(node) = self.cache.get(&key) {
            let node = Rc::clone(node);
            node.borrow_mut().value = value;
            self.remove(&node);
            self.push_front(&node);
        } else {
            let node = Rc::new(RefCell::new(Node::new(key, value)));
            self.cache.insert(key, Rc::clone(&node));
            self.push_front(&node);
            if self.cache.len() > self.capacity {
                if let Some(back) = self.pop_back() {
                    self.cache.remove(&back.borrow().key);
                }
            }
        }
    }

    fn push_front(&mut self, node: &Rc<RefCell<Node>>) {
        let mut node_borrow_mut = node.borrow_mut();
        if let Some(head) = self.head.take() {
            head.borrow_mut().prev = Some(Rc::clone(node));
            node_borrow_mut.next = Some(head);
            node_borrow_mut.prev = None;
            self.head = Some(Rc::clone(node));
        } else {
            self.head = Some(Rc::clone(node));
            self.tail = Some(Rc::clone(node));
        }
    }

    fn remove(&mut self, node: &Rc<RefCell<Node>>) {
        match (node.borrow().prev.as_ref(), node.borrow().next.as_ref()) {
            (None, None) => {
                self.head = None;
                self.tail = None;
            }
            (None, Some(next)) => {
                self.head = Some(Rc::clone(next));
                next.borrow_mut().prev = None;
            }
            (Some(prev), None) => {
                self.tail = Some(Rc::clone(prev));
                prev.borrow_mut().next = None;
            }
            (Some(prev), Some(next)) => {
                next.borrow_mut().prev = Some(Rc::clone(prev));
                prev.borrow_mut().next = Some(Rc::clone(next));
            }
        }
    }

    fn pop_back(&mut self) -> Option<Rc<RefCell<Node>>> {
        if let Some(tail) = self.tail.take() {
            match tail.borrow().prev.as_ref() {
                Some(prev) => {
                    prev.borrow_mut().next = None;
                    self.tail = Some(Rc::clone(prev));
                }
                None => {
                    self.head = None;
                    self.tail = None;
                }
            }
            Some(tail)
        } else {
            None
        }
    }
}

Go

type node struct {
	key, val   int
	prev, next *node
}

type LRUCache struct {
	capacity   int
	cache      map[int]*node
	head, tail *node
}

func Constructor(capacity int) LRUCache {
	head := new(node)
	tail := new(node)
	head.next = tail
	tail.prev = head
	return LRUCache{
		capacity: capacity,
		cache:    make(map[int]*node, capacity),
		head:     head,
		tail:     tail,
	}
}

func (this *LRUCache) Get(key int) int {
	n, ok := this.cache[key]
	if !ok {
		return -1
	}
	this.moveToFront(n)
	return n.val
}

func (this *LRUCache) Put(key int, value int) {
	n, ok := this.cache[key]
	if ok {
		n.val = value
		this.moveToFront(n)
		return
	}
	if len(this.cache) == this.capacity {
		back := this.tail.prev
		this.remove(back)
		delete(this.cache, back.key)
	}
	n = &node{key: key, val: value}
	this.pushFront(n)
	this.cache[key] = n
}

func (this *LRUCache) moveToFront(n *node) {
	this.remove(n)
	this.pushFront(n)
}

func (this *LRUCache) remove(n *node) {
	n.prev.next = n.next
	n.next.prev = n.prev
	n.prev = nil
	n.next = nil
}

func (this *LRUCache) pushFront(n *node) {
	n.prev = this.head
	n.next = this.head.next
	this.head.next.prev = n
	this.head.next = n
}

C++

struct Node {
    int k;
    int v;
    Node* prev;
    Node* next;

    Node(): k(0), v(0), prev(nullptr), next(nullptr) {}
    Node(int key, int val): k(key), v(val), prev(nullptr), next(nullptr) {}
};

class LRUCache {
public:
    LRUCache(int capacity): cap(capacity), size(0) {
        head = new Node();
        tail = new Node();
        head->next = tail;
        tail->prev = head;
    }
    
    int get(int key) {
        if (!cache.count(key)) return -1;
        Node* node = cache[key];
        moveToHead(node);
        return node->v;
    }
    
    void put(int key, int value) {
        if (cache.count(key))
        {
            Node* node = cache[key];
            node->v = value;
            moveToHead(node);
        }
        else
        {
            Node* node = new Node(key, value);
            cache[key] = node;
            addToHead(node);
            ++size;
            if (size > cap)
            {
                node = removeTail();
                cache.erase(node->k);
                --size;
            }
        }
    }

private:
    unordered_map<int, Node*> cache;
    Node* head;
    Node* tail;
    int cap;
    int size;

    void moveToHead(Node* node) {
        removeNode(node);
        addToHead(node);
    }

    void removeNode(Node* node) {
        node->prev->next = node->next;
        node->next->prev = node->prev;
    }

    void addToHead(Node* node) {
        node->next = head->next;
        node->prev = head;
        head->next = node;
        node->next->prev = node;
    }

    Node* removeTail() {
        Node* node = tail->prev;
        removeNode(node);
        return node;
    }
};

/**
 * Your LRUCache object will be instantiated and called as such:
 * LRUCache* obj = new LRUCache(capacity);
 * int param_1 = obj->get(key);
 * obj->put(key,value);
 */

...