-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
195 lines (164 loc) · 6.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
print("Cargando librerias...")
from groq import Groq
import time
from PIL import ImageGrab, Image
import cv2
import pyperclip
import google.generativeai as genai
import pyaudio
from faster_whisper import WhisperModel
import os
import time
import speech_recognition as sr
import re
from Prompts import Initial_prompt, function_call_prompt
from CONST import GROQ_API_KEY, GENAI_API_KEY
print("\nLibrerias cargadas")
# Configuración inicial
print("\nCargando api keys...")
key_word = 'luis'
grop_client = Groq(api_key=GROQ_API_KEY)
genai.configure(api_key=GENAI_API_KEY)
print("Api keys cargadas correctamente")
sys_msg = Initial_prompt()
print("Inizializando modelo de whisper...")
model_size = "medium"
Whisper_model = WhisperModel(model_size, device="cuda", compute_type="float16")
print("Modelo de whisper cargado correctamente...")
convo = [{'role': 'system', 'content': sys_msg}]
generation_config = {
'temperature': 0.7,
'top_p': 1,
'top_k': 1,
'max_output_tokens': 2048
}
safety_settings = [
{
'category': 'HARM_CATEGORY_HARASSMENT',
'threshold': 'BLOCK_NONE'
},
{
'category': 'HARM_CATEGORY_HATE_SPEECH',
'threshold': 'BLOCK_NONE'
},
{
'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
'threshold': 'BLOCK_NONE'
},
{
'category': 'HARM_CATEGORY_DANGEROUS_CONTENT',
'threshold': 'BLOCK_NONE'
},
]
model = genai.GenerativeModel('gemini-1.5-flash-latest',
generation_config= generation_config,
safety_settings= safety_settings)
r = sr.Recognizer()
source = sr.Microphone()
def groq_prompt(prompt, imgContext):
if imgContext:
prompt = f'USER PROMPT: {prompt}\n\n CONTEXTO DE IMGEN: {imgContext}'
convo.append({"role": "user", "content": prompt})
chat_completion = grop_client.chat.completions.create(messages=convo, model="llama3-70b-8192")
response = chat_completion.choices[0].message
convo.append(response)
return response.content
def function_call(prompt):
sys_msg = function_call_prompt()
funcion_convo= [{'role':'system', 'content': sys_msg},
{'role':'user', 'content': prompt}]
chat_completion = grop_client.chat.completions.create(messages=funcion_convo, model="llama3-70b-8192")
response = chat_completion.choices[0].message
return response.content
def take_screenshot():
path = 'screenshot.jpg'
screenshot = ImageGrab.grab()
rgb_screenshot = screenshot.convert('RGB')
rgb_screenshot.save(path, quality=15)
def web_cam_capture():
cam = cv2.VideoCapture(0)
if not cam.isOpened():
print("Cannot open webcam")
return None
path = "webcam.jpg"
ret, frame = cam.read()
if not ret:
print("Failed to capture image from webcam")
cam.release()
return None
cv2.imwrite(path, frame)
cam.release()
return path
def get_clipboard():
clipboard_content = pyperclip.paste()
if isinstance(clipboard_content, str):
return clipboard_content
else:
print("No hay clipboard copiado")
return None
def vision_prompt(prompt, photo_path):
img = Image.open(photo_path)
prompt =(
'Eres la IA de análisis de visión que proporciona significado semántico a partir de imágenes para proporcionar contexto '
'para enviar a otra IA que creará una respuesta para el usuario. No respondas como asistente de IA'
'al usuario. En lugar de eso, toma el mensaje del usuario e intenta extraer todo el significado de la foto'
'relevante para el usuario. A continuación, genera la mayor cantidad de datos objetivos sobre la imagen para la IA '
f'asistente que responderá al usuario. \nUSER PROMPT: {prompt}'
)
response = model.generate_content([prompt, img])
return response.text
# def wav_to_text(audio_path):
# segments, _ = Whisper_model.transcribe(audio_path)
# text = ''.join(segments.text for seg in segments)
# return text
def wav_to_text(audio_path):
segments, _ = Whisper_model.transcribe(audio_path)
# Convertir el generador en una lista
segments = list(segments)
text = ''.join(seg.text for seg in segments)
return text
#callback here
def callback(recognizer, audio):
prompt_audio_path = 'prompt.wav'
with open(prompt_audio_path, 'wb') as f:
f.write(audio.get_wav_data())
prompt_text = wav_to_text(prompt_audio_path)
clean_prompt = extract_prompt(prompt_text, key_word)
print('clean prompt: ' + prompt_text)
new_prompt = prompt_text.lower()
if clean_prompt:
print(f'USER: {clean_prompt}')
call = function_call(clean_prompt)
visual_context = None
if "take screenshot" in call:
print("Tomando captura de pantalla")
take_screenshot()
visual_context = vision_prompt(prompt=clean_prompt, photo_path='screenshot.jpg')
elif 'capture webcam' in call:
print("Capturando la webcam")
webcam_path = web_cam_capture()
if webcam_path:
visual_context = vision_prompt(prompt=clean_prompt, photo_path=webcam_path)
elif 'extract clipboard' in call:
print("Extrayendo contenido del clipboard")
clipboard_content = get_clipboard()
clean_prompt = f'{clean_prompt}\n\n Contenido del clipboard: {clipboard_content}'
response = groq_prompt(prompt=clean_prompt, imgContext=visual_context)
print(f'Assistant: {response}')
def start_listening():
with source as s:
r.adjust_for_ambient_noise(s, duration=2)
print("\n Comenzando grabancion \n\n Menciona la palabra clave seguido de tu prompt")
r.listen_in_background(source, callback)
while True:
time.sleep(0.5)
def extract_prompt(transcripted_txt, key_word):
pattern = rf'\b{re.escape(key_word)}[\s,,.?!]*([A-Za-z0-9].*)'
match = re.search(pattern, transcripted_txt, re.IGNORECASE)
if match:
prompt = match.group(1).strip()
return prompt
else:
return None
if __name__ == '__main__':
start_listening()