forked from M3RG-IITD/cod-bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gnot_stress.py
100 lines (76 loc) · 3.75 KB
/
run_gnot_stress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Testing 5 Models:
# 1. GNOT
################ Importing Libraries ####################################
from models.gnot.cgpt import CGPTNO
import torch
from trainer import Trainer
from utils import utilities, transforms
from loader.dataloader import *
from loader.loader_gnot import *
from utils.utilities import set_seed
import argparse
#########################################################################
############### Setting the Device and Random SEED ######################
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=0, help = "Input Experiment Random Seed")
parser.add_argument("--gpu_card", default=0, help = "GPU CARD")
parser.add_argument("--lr", default=1e-4, help = "OPTIMIZER LEARNING RATE")
args = parser.parse_args()
random_seed = int(args.seed)
gpu = int(args.gpu_card)
lr = float(args.lr)
set_seed(random_seed)
device = torch.device(f'cuda:{gpu}') if torch.cuda.is_available() else 'cpu'
#########################################################################
################## Creating the Models ##################################
models = {
'GNOT': CGPTNO(trunk_size=4, output_size=1, branch_sizes=[]).to(device),
}
#########################################################################
###################### Dataset Params ###################################
PATH = 'data/Stress_N1200_D48.npz'
training_data_resolution = 48
grid_size = 48
batch_size = 20
ntrain = 900
nval = 100
ntest = 200
#########################################################################
##################### Generate Data-Loaders #############################
loader = npzloader(path=PATH)
x_train, y_train, x_val, y_val, x_test, y_test = loader.split(ntrain, nval, ntest)
x_normalizer = utilities.UnitGaussianNormalizer(x_train.reshape(ntrain, -1, 1))
y_normalizer = utilities.UnitGaussianNormalizer(y_train.reshape(ntrain, -1))
train_dataset = GNOTDataset(x=x_train, y=y_train, n=ntrain, res=training_data_resolution, \
grid_size=grid_size, x_normalizer=x_normalizer)
val_dataset = GNOTDataset(x=x_val, y=y_val, n=nval, res=training_data_resolution, \
grid_size=grid_size, x_normalizer=x_normalizer)
test_dataset = GNOTDataset(x=x_test, y=y_test, n=ntest, res=training_data_resolution, \
grid_size=grid_size, x_normalizer=x_normalizer)
train_loader = GNOTDataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
val_loader = GNOTDataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
test_loader = GNOTDataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
#########################################################################
################## HyperParameters for Training #########################
hyperparameters = {
'lr': lr,
'weight_decay': 1e-4,
'total_steps': 50000,
'div_factor': 1e4,
'final_div_factor': 1e4,
'optimizer': 'AdamW',
'scheduler': 'OneCycleLR',
'loss_fn': 'WRelL2',
'loss_metric': 'MSE',
'batch_size': batch_size,
'random_seed': random_seed,
}
#########################################################################
############# Create the Trainer, Fit Dataset and Test ##################
out_transform = transforms.OutTransforms(y_normalizer, device=device).stdTransform
for model_name in models:
model = models[model_name]
trainer = Trainer(model_name=f"Benchmark+{model_name}+Stress", model=model, hyperparams=hyperparameters, \
output_transform=out_transform, patience=150, device=device)
trainer.fit(train_dataloader=train_loader, val_dataloader=val_loader, test_dataloader=test_loader)
#########################################################################