forked from M3RG-IITD/cod-bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun3_stress.py
100 lines (79 loc) · 3.67 KB
/
run3_stress.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
from trainer import Custom_Trainer
from utils import utilities, transforms
from models.oformer.oformer import build_model_2d_mech
from loader.dataloader import *
from loader.loader_2d import *
import argparse
from utils.utilities import set_seed
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=0, help = "Input Experiment Random Seed")
parser.add_argument("--gpu_card", default=1, help = "GPU CARD")
parser.add_argument("--lr", default=1e-3, help = "OPTIMIZER LEARNING RATE")
args = parser.parse_args()
random_seed = int(args.seed)
gpu = int(args.gpu_card)
lr = float(args.lr)
set_seed(random_seed)
device = torch.device(f'cuda:{gpu}') if torch.cuda.is_available() else 'cpu'
###################### Dataset Params ###################################
PATH = 'data/Stress_N1200_D48.npz'
training_data_resolution = 48
grid_size = 48
batch_size = 20
ntrain = 900
nval = 100
ntest = 200
#########################################################################
##################### Generate Data-Loaders #############################
loader = npzloader(path=PATH)
x_train, y_train, x_val, y_val, x_test, y_test = loader.split(ntrain, nval, ntest)
x_normalizer = utilities.UnitGaussianNormalizer(x_train)
y_normalizer = utilities.UnitGaussianNormalizer(y_train)
# train loader obj
train_obj = DataLoader_2D(X=x_train, y=y_train, n=ntrain, res=training_data_resolution, \
grid_size=grid_size, batch_size=batch_size, x_normalizer=x_normalizer)
# val loader obj
val_obj = DataLoader_2D(X=x_val, y=y_val, n=nval, res=training_data_resolution, \
grid_size=grid_size, batch_size=batch_size, x_normalizer=x_normalizer)
# test loader obj
test_obj = DataLoader_2D(X=x_test, y=y_test, n=ntest, res=training_data_resolution, \
grid_size=grid_size, batch_size=batch_size, x_normalizer=x_normalizer)
# dataloaders with grid info
train_loader = train_obj.get_grid_loader()
val_loader = val_obj.get_grid_loader()
test_loader = test_obj.get_grid_loader()
grid = train_obj.get_grid()
grid = grid.reshape(1, -1, 2)
#########################################################################
hyperparameters = {
'res': 48,
'enc_lr': 1e-3,
'dec_lr': 1e-3,
'dec_weight_decay': 1e-4,
'enc_weight_decay': 1e-4,
'enc_optimizer': 'Adam',
'dec_optimizer': 'Adam',
'enc_scheduler': 'OneCycleLR',
'dec_scheduler': 'OneCycleLR',
'total_steps': 50000,
'enc_div_factor': 1e2,
'dec_final_div_factor': 1e5,
'dec_div_factor': 1e2,
'enc_final_div_factor': 1e5,
'enc_loss_fn': 'O2',
'dec_loss_fn': 'RelL2',
'loss_metric': 'MSE',
'batch_size': batch_size,
'random_seed': random_seed,
}
###################OFormer Model############################################################
encoder, decoder = build_model_2d_mech(res=48)
encoder, decoder = encoder.to(device), decoder.to(device)
input_transform = transforms.InTransforms(grid=grid, device=device).oformerEncoderTransform
input_dec_transform = transforms.InTransforms(grid=grid, device=device).oformerDecoderTransform
output_dec_transform = transforms.OutTransforms(device=device, res=48, y_normalizer=y_normalizer).oformerTransform
trainer = Custom_Trainer(model_name='OFormer', project_name='Benchmark+OFormer+Stress', res=48, encoder=encoder, decoder=decoder, \
hyperparams=hyperparameters, grid=grid, input_transform=input_transform, dec_input_transform=input_dec_transform, dec_output_transform=output_dec_transform, device=device)
trainer.fit(train_dataloader=train_loader, val_dataloader=val_loader, test_dataloader=test_loader)
############################################################################################