forked from M3RG-IITD/cod-bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun2_burgers.py
118 lines (88 loc) · 4.14 KB
/
run2_burgers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Testing 3 Models:
# 1. DEEPONET
# 2. PODDEEPONET
# 3. SNO
################ Importing Libraries ####################################
from models.deeponet.deeponet_1d import DeepONet
from models.deeponet.deeponet_1d import PODDeepONet
from models.sno.sno1d import *
import torch
from trainer import Trainer
from utils import utilities, transforms
from loader.dataloader import *
from loader.loader_1d import *
from utils.utilities import set_seed
import argparse
#########################################################################
############### Setting the Device and Random SEED ######################
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=0, help = "Input Experiment Random Seed")
args = parser.parse_args()
random_seed = int(args.seed)
set_seed(random_seed)
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
#########################################################################
###################### Dataset Params ###################################
PATH = 'data/Burgers_N2048_D8192.npz'
training_data_resolution = 8192
grid_size = 8192
batch_size = 80
ntrain = 1700
nval = 148
ntest = 200
#########################################################################
##################### Generate Data-Loaders #############################
loader = npzloader(path=PATH)
x_train, y_train, x_val, y_val, x_test, y_test = loader.split(ntrain, nval, ntest)
x_normalizer = None#utilities.UnitGaussianNormalizer(x_train)
y_normalizer = None#utilities.UnitGaussianNormalizer(y_train)
# train loader obj
train_obj = DataLoader_1D(X=x_train, y=y_train, n=ntrain, res=training_data_resolution, \
grid_size=grid_size, batch_size=batch_size, x_normalizer=x_normalizer)
# val loader obj
val_obj = DataLoader_1D(X=x_val, y=y_val, n=nval, res=training_data_resolution, \
grid_size=grid_size, batch_size=batch_size, x_normalizer=x_normalizer)
# test loader obj
test_obj = DataLoader_1D(X=x_test, y=y_test, n=ntest, res=training_data_resolution, \
grid_size=grid_size, batch_size=batch_size, x_normalizer=x_normalizer)
# dataloaders with grid info
train_grid_loader = train_obj.get_loader()
val_grid_loader = val_obj.get_loader()
test_grid_loader = test_obj.get_loader()
grid = train_obj.get_grid()
#########################################################################
################## Creating the Models ##################################
models = {
# 'PODDeepONet': PODDeepONet(normalized_y_train=y_train).to(device),
# 'DeepONet': DeepONet(CONST_Y_LOC=grid.to(device)).to(device),
'SNO': fSNO1d().to(device),
}
#########################################################################
################## HyperParameters for Training #########################
hyperparameters = {
'lr': 1e-3,
'weight_decay': 1e-4,
'step_size': 100,
'gamma': 0.75,
'optimizer': 'AdamW',
'scheduler': 'StepLR',
'loss_fn': 'RelL2',
'loss_metric': 'MSE',
'batch_size': batch_size,
'random_seed': random_seed,
}
#########################################################################
############# Create the Trainer, Fit Dataset and Test ##################
# out_transform = transforms.OutTransforms(y_normalizer, device=device, modes=32, y_mean=models['PODDeepONet'].__getMean__()).podnetTransform
out_transform = None#transforms.OutTransforms(y_normalizer, device=device).stdTransform
for model_name in models:
model = models[model_name]
if model_name == 'SNO':
hyperparameters['lr'] = 1e-3
hyperparameters['step_size'] = 50
hyperparameters['gamma'] = 0.75
trainer = Trainer(model_name=f"Tuned_Benchmark+{model_name}+Burgers", model=model, hyperparams=hyperparameters, \
output_transform=out_transform, device=device)
trainer.fit(train_dataloader=train_grid_loader, val_dataloader=val_grid_loader, test_dataloader=test_grid_loader)
out_transform = None#transforms.OutTransforms(y_normalizer, device=device).stdTransform
#########################################################################