-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassbacteria.py
399 lines (381 loc) · 13.4 KB
/
classbacteria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import numpy as np
import matplotlib.pyplot as plt
import random
import os
def get_randColor():
#RETURN A EXADECIMAL RANDOM COLOR ie #ff45e2
r = lambda: random.randint(0, 255)
return '#%02X%02X%02X' % (r(), r(), r())
def percentage_row(matrix, style='row'):
mc = matrix.copy()
if style != 'row':
mc = mc.T
#computing sum row by row
return mc / mc.sum(axis=1).reshape(-1, 1)
class BacteriaGraph(object):
"""
the srcTable need a format samples X bacteria.
this class can be used for receive, as a output,
some graphics which analyze the data:
*percentagehistogramm:
from the table it can create the percentage
of the presence of the bacteria for each sample
*metricsplot:
from the metrics it create a plot that shows
the precision of the results of the machine
learning. "Style" can be 1, for only the first
10 misurations, 2, for 100, 3, for 1000,
or 4, for all.
*classbacteriahistogramm:
from the class.txt it produce a histogramm which
represent the average of the percentage of
the bacteria for each class
"""
def __init__(self, srcTable='sourcetable.txt', srcClass='sourceclass.txt', srcMetrics='sourcemetrics.txt', srcFeatureList='sourcefeaturelist.txt', srcStability='sourcestability.txt'):
self.srcTable = srcTable
self.srcClass = srcClass
self.srcMetrics = srcMetrics
self.srcFeatureList = srcFeatureList
self.srcStability = srcStability
self._loadData()
def _loadData(self):
#if (os.path.exists(srcTable) = True and os.path.lexists(srcInfo) = True and os.path.lexists(srcMetrics) = True and os.path.lexists(srcFeatureList) = True and os.path.lexists(srcStability) = True):
self.data1 = np.loadtxt(self.srcTable)
self.data2 = self.data1.T
self.samplesCount = self.data1.shape[0]
self.bacteriaCount = self.data1.shape[1]
self.metrics = np.loadtxt(self.srcMetrics, skiprows = 2)
self.classes = np.loadtxt(self.srcClass)
#else:
#raise Exception("wrong source file insert")
def percentagehistogramm(self):
#CREATION OF THE PERCENTAGE HISTOGRAMM OF THE DATA WITH RANDOM COLORS
#clculate the percentage
percentageData = percentage_row(self.data1)
width = 0.8
bottom = [0] * self.samplesCount
colors = [0] * self.bacteriaCount
rangeNum = np.arange(self.bacteriaCount + 1)
n = 0
for i in percentageData:
if n != 0:
#sum the botton at the last bottom
cont = 0
while cont < self.samplesCount + 1:
bottom[cont] = bottom[cont] + hist[cont]
cont += 1
hist = i
#random color for the histogramm
randColor = get_randColor()
colors[n] = randColor
plt.bar(rangeNum - 0.5, hist, width, color = randColor, bottom = bottom)
n += 1
plt.xlabel('Samples')
plt.ylabel('Bacteria')
plt.title('Histogramm of bacteria percentage')
plt.savefig('histplot', format = 'png')
#def metricsplot(self, style=1):
#pass
"""
self.style = style
#definition of the columns of the file
colRep = 0
colMMC = 1
colMMCmin = 2
colMMCmax = 3
colSENS = 4
colSENSmin = 5
colSENSmax = 6
colSPEC = 7
colSPECmin = 8
colSPECmax = 9
colPPV = 10
colPPVmin = 11
colPPVmax = 12
colNPV = 13
colNPVmin = 14
colNPVmax = 15
colAUC = 16
colAUCmin = 17
colAUCmax = 18
colACC = 19
colACCmin = 20
colACCmax = 21
colDOR = 22
colDORmin = 23
colDORmax = 24
numData = 3694 #number of analysis
rowData = self.metrics
if style == 1:
rowData = self.metrics[:10]
numData = 10
elif style == 2:
rowData = self.metrics[:100]
numData = 100
elif style == 3:
rowData = self.metrics[:1000]
numData = 1000
#definition of the array
arrRep = np.zeros(numData + 1)
arrMCC = np.zeros(numData + 1)
arrMCCerr = np.zeros(numData + 1)
arrSENS = np.zeros(numData + 1)
arrSENSerr = np.zeros(numData + 1)
arrSPEC = np.zeros(numData + 1)
arrSPECerr = np.zeros(numData + 1)
arrPPV = np.zeros(numData + 1)
arrPPVerr = np.zeros(numData + 1)
arrNPV = np.zeros(numData + 1)
arrNPVerr = np.zeros(numData + 1)
arrAUC = np.zeros(numData + 1)
arrAUCerr = np.zeros(numData + 1)
arrACC = np.zeros(numData + 1)
arrACCerr = np.zeros(numData + 1)
#arrDOR = np.zeros(numData + 1)
#arrDORerr = np.zeros(numData + 1)
n = 0
for i in rowData:
arr = i
arrRep[n] = arr[colRep]
arrMCC[n] = arr[colMMC]
arrMCCerr[n] = (arr[colMMCmax] - arr[colMMCmin])/2
arrSENS[n] = arr[colSENS]
arrSENSerr[n] = (arr[colSENSmax] - arr[colSENSmin])/2
arrSPEC[n] = arr[colSPEC]
arrSPECerr[n] = (arr[colSPECmax] - arr[colSPECmin])/2
arrPPV[n] = arr[colPPV]
arrPPVerr[n] = (arr[colPPVmax] - arr[colPPVmin])/2
arrNPV[n] = arr[colNPV]
arrNPVerr[n] = (arr[colNPVmax] - arr[colNPVmin])/2
arrAUC[n] = arr[colAUC]
arrAUCerr[n] = (arr[colAUCmax] - arr[colAUCmin])/2
arrACC[n] = arr[colACC]
arrACCerr[n] = (arr[colACCmax] - arr[colACCmin])/2
#arrDOR[n] = arr[colDOR]
#arrDORerr[n] = (arr[colDORmax] - arr[colDORmin])/2
n += 1
#plot the pictures
plt.errorbar(arrRep, arrMCC, xerr=0, yerr=arrMCCerr)
plt.xlim((0.5, numData + 1))
plt.subplot().set_xscale("log")
plt.savefig('graphs/MCC_metricsplot' + str(style), format = 'png')
plt.clf()
plt.errorbar(arrRep, arrSENS, xerr=0, yerr=arrSENSerr, color = 'red')
plt.xlim((0.5, numData + 1))
plt.subplot().set_xscale("log")
plt.savefig('graphs/SENS_metricsplot' + str(style), format = 'png')
plt.clf()
plt.errorbar(arrRep, arrSPEC, xerr=0, yerr=arrSPECerr, color = 'green')
plt.xlim((0.5, numData + 1))
plt.subplot().set_xscale("log")
plt.savefig('graphs/SPEC_metricsplot' + str(style), format = 'png')
plt.clf()
plt.errorbar(arrRep, arrPPV, xerr=0, yerr=arrPPVerr, color = 'black')
plt.xlim((0.5, numData + 1))
plt.subplot().set_xscale("log")
plt.savefig('graphs/PPV_metricsplot' + str(style), format = 'png')
plt.clf()
plt.errorbar(arrRep, arrNPV, xerr=0, yerr=arrNPVerr, color = 'purple')
plt.xlim((0.5, numData + 1))
plt.subplot().set_xscale("log")
plt.savefig('graphs/NPV_metricsplot' + str(style), format = 'png')
plt.clf()
plt.errorbar(arrRep, arrAUC, xerr=0, yerr=arrAUCerr, color = 'orange')
plt.xlim((0.5, numData + 1))
plt.subplot().set_xscale("log")
plt.savefig('graphs/AUC_metricsplot' + str(style), format = 'png')
plt.clf()
plt.errorbar(arrRep, arrACC, xerr=0, yerr=arrACCerr, color = 'brown')
plt.xlim((0.5, numData + 1))
plt.subplot().set_xscale("log")
plt.savefig('graphs/ACC_metricsplot' + str(style), format = 'png')
plt.clf()
#plot the big one graph (made by the other five graphs) in alphabetic order
plt.errorbar(arrRep, arrMCC, yerr=arrMCCerr, color = 'blue')
plt.xlim((0.5, numData + 1))
plt.subplot(243).set_xscale("log")
plt.errorbar(arrRep, arrSENS, yerr=arrSENSerr, color = 'red')
plt.xlim((0.5, numData + 1))
plt.subplot(246).set_xscale("log")
plt.errorbar(arrRep, arrSPEC, yerr=arrSPECerr, color = 'green')
plt.xlim((0.5, numData + 1))
plt.subplot(247).set_xscale("log")
plt.errorbar(arrRep, arrPPV, yerr=arrPPVerr, color = 'black')
plt.xlim((0.5, numData + 1))
plt.subplot(245).set_xscale("log")
plt.errorbar(arrRep, arrNPV, yerr=arrNPVerr, color = 'purple')
plt.xlim((0.5, numData + 1))
plt.subplot(244).set_xscale("log")
plt.errorbar(arrRep, arrAUC, yerr=arrAUCerr, color = 'orange')
plt.xlim((0.5, numData + 1))
plt.subplot(242).set_xscale("log")
plt.errorbar(arrRep, arrACC, yerr=arrACCerr, color = 'brown')
plt.xlim((0.5, numData + 1))
plt.subplot(241).set_xscale("log")
plt.savefig('graphs/_allMetricsplots' + str(style), format = 'png')
plt.clf()
"""
def printSinglePlot(self, **kwargs):
"""
Read the data stored in self.metrics, using column 0 as
x axis values. Select the columns specified by *valueCol*,
*minCol*, *maxCol* as Y values and print a png chart.
args:
*vCol*
(int)
number of the column with the Y values to plot
*minCol*
(int)
number of the column with the min Y values
*maxCol*
(int)
number of the column with the max Y values
-----------------------
optional args:
*xLim*
(int)
x axis maximum value (scale). If xLim=None then x represents all the repetitions. Defaults to 10.
*color*
(str)
The color of the func line (Y values). It defaults to "red".
*oudDir*
(str)
output dir. Defaults to `graphs'.
*outFile*
(str)
output filename. Defaults to `testGraph.png'.
"""
# manage args
vCol = kwargs.get('vCol')
minCol = kwargs.get('minCol')
maxCol = kwargs.get('maxCol')
xLim = kwargs.get('xLim', 10)
color = kwargs.get('color', 'red')
outDir = kwargs.get('outDir', 'graphs')
outFile = kwargs.get('outFile', 'testGraph.png')
filename = kwargs.get('filename', 'testGraph')
#filename = ''
# managment of the 'xlim=None'
if xLim == None:
xLIm = self.metrics.shape[0]
# init 3 empty arrays for the sets: value, min, max
xArray = self.metrics[:xLim, 0]
vArray = self.metrics[:xLim, vCol]
minArray = self.metrics[:xLim, minCol]
maxArray = self.metrics[:xLim, maxCol]
# set file path
if not os.path.exists(outDir):
os.makedirs(outDir)
filePath = os.path.join(outDir, outFile)
# print the png image using matplotlib
plt.ylim((0, 1))
plt.xscale("log")
plt.xlim((0.1, xLim + 1))
plt.plot(xArray, vArray, color=color)
plt.plot(xArray, minArray, color='#C0C0C0')
plt.plot(xArray, maxArray, color='#C0C0C0')
#plt.title(filename + ' graphic')
plt.xlabel('features')
plt.ylabel(filename)
plt.savefig(filePath, format="png")
plt.clf()
def printAllPlots(self, outputPath):
"""
Define a dict with the configuration of the plots I want to
print on a graph, and call many times self.printSinglePlot
to generate the png.
"""
myConf = [{'vCol' : 1,
'minCol' : 2,
'maxCol' : 3,
'filename' : "MCC",
'outFile' : "",
'color' : "blue",
'xLim' : None
},
{'vCol' : 4,
'minCol' : 5,
'maxCol' : 6,
'filename' : "SENS",
'outFile' : "",
'color' : "red",
'xLim' : None
},
{'vCol' : 7,
'minCol' : 8,
'maxCol' : 9,
'filename' : "SPEC",
'outFile' : "",
'color' : "green",
'xLim' : None
},
{'vCol' : 10,
'minCol' : 11,
'maxCol' : 12,
'filename' : "PPV",
'outFile' : "",
'color' : "yellow",
'xLim' : None
},
{'vCol' : 13,
'minCol' : 14,
'maxCol' : 15,
'filename' : "NPV",
'outFile' : "",
'color' : "purple",
'xLim' : None
},
{'vCol' : 16,
'minCol' : 17,
'maxCol' : 18,
'filename' : "AUC",
'outFile' : "",
'color' : "orange",
'xLim' : None
},
{'vCol' : 19,
'minCol' : 20,
'maxCol' : 21,
'filename' : "ACC",
'outFile' : "",
'color' : "brown",
'xLim' : None
}]
allLeng = self.metrics.T
allLeng = allLeng[0]
allLeng = allLeng[len(allLeng) -1]
for conf in myConf:
for xLim in [10, 100, 1000, allLeng]:
conf['xLim'] = xLim
filename = "{0}_{1}.png".format(conf['filename'], int(xLim))
conf['outFile'] = filename
conf['outDir'] = outputPath
self.printSinglePlot(**conf)
'''
def classbacteriahistogramm():
#calculate the number of classes
try:
n = 0
for i in self.classes:
test = True
for j in arrCases:
if j == i:
test = False
break
if test == True:
arrCases.append[i]
except:
arrCases[0] = self.classes[0]
numCases = len(arrCases)
#calculate the average of the presence of bacteria
avBacteria = np.zeros((self.bacteriaCount, numCases))
for i in self.classes:
pass
'''
if __name__ == "__main__":
a=BacteriaGraph('fakedata/percentagebacteria.txt', 'fakedata/P2', 'fakedata/metrics.txt')
a.printAllPlots('vducduhjh')
#a.metricsplot(2)
#a.metricsplot(4)
#a.metricsplot(1)
#a.percentagehistogramm()