diff --git a/.github/ISSUE_TEMPLATE/issue.yml b/.github/ISSUE_TEMPLATE/issue.yml new file mode 100644 index 0000000..eff3c20 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/issue.yml @@ -0,0 +1,49 @@ +# GitHub Issue template for bug reports +name: Open a GitHub issue +description: > + Please use this form to send along new ideas for content or + changes that might be helpful! + +body: + - type: checkboxes + attributes: + label: Is this a duplicate of an existing idea for this project? + description: > + Please make sure to search in the + [issues](https://github.com/WayScience/CytoDataFrame/issues) first + to see whether the same issue was reported already. + If you find an existing issue, please don't hesitate to comment + on it or add a reaction to existing content! + options: + - label: > + I found no existing + [issues](https://github.com/WayScience/CytoDataFrame/issues) + covering this topic. + required: true + + - type: textarea + id: description + attributes: + label: What is your idea? + description: > + Please provide a specific description of what you'd like to see + including the context and what the result might look like. + placeholder: > + For example: "When x happens I see y. + The following might be a good way to address this ..." + validations: + required: true + + - type: checkboxes + attributes: + label: Would you like to work on a solution for this? + description: > + This is a community-driven project and we + love new contributors (including through opening or adding to issues)! + This is an optional check to help us understand your interest to be + involved (especially if you already have a good understanding + of how to implement it). + We are happy to guide you in the contribution process and please + don't hesitate to reach out for help along the way. + options: + - label: Yes I am willing to submit a PR for this! diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md new file mode 100644 index 0000000..9f03218 --- /dev/null +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -0,0 +1,37 @@ + + +# Description + + + +## What kind of change(s) are included? + +- [ ] Documentation (changes docs or other related content) +- [ ] Bug fix (fixes an issue). +- [ ] Enhancement (adds functionality). +- [ ] Breaking change (these changes would cause existing functionality to not work as expected). + +# Checklist + +Please ensure that all boxes are checked before indicating that this pull request is ready for review. + +- [ ] I have read and followed the [CONTRIBUTING.md](CONTRIBUTING.md) guidelines. +- [ ] I have searched for existing content to ensure this is not a duplicate. +- [ ] I have performed a self-review of these additions (including spelling, grammar, and related). +- [ ] These changes pass all pre-commit checks. +- [ ] I have added comments to my code to help provide understanding +- [ ] I have added a test which covers the code changes found within this PR +- [ ] I have deleted all non-relevant text in this pull request template. diff --git a/.github/dependabot.yml b/.github/dependabot.yml new file mode 100644 index 0000000..9c752b0 --- /dev/null +++ b/.github/dependabot.yml @@ -0,0 +1,16 @@ +# GitHub Dependabot configuration +# Note: there is no interaction between this +# configuration and dependabot security updates. +# See here for more information: +# https://docs.github.com/en/code-security/dependabot/dependabot-security-updates/about-dependabot-security-updates#about-dependabot-security-updates + +version: 2 +updates: + # GitHub Actions checks + # See here for more information: + # https://docs.github.com/en/code-security/dependabot/dependabot-version-updates/configuring-dependabot-version-updates + - package-ecosystem: "github-actions" + directory: "/" + schedule: + # Check for updates to GitHub Actions every week + interval: "weekly" diff --git a/.github/release-drafter.yml b/.github/release-drafter.yml new file mode 100644 index 0000000..3d8f4ed --- /dev/null +++ b/.github/release-drafter.yml @@ -0,0 +1,21 @@ +--- +# template configuration for release-drafter +# see: https://github.com/release-drafter/release-drafter +name-template: 'v$RESOLVED_VERSION' +tag-template: 'v$RESOLVED_VERSION' +version-resolver: + major: + labels: + - 'release-major' + minor: + labels: + - 'release-minor' + patch: + labels: + - 'release-patch' + default: patch +change-template: '- $TITLE (@$AUTHOR via #$NUMBER)' +template: | + ## Changes + + $CHANGES diff --git a/.github/workflows/draft-release.yml b/.github/workflows/draft-release.yml new file mode 100644 index 0000000..4847e3e --- /dev/null +++ b/.github/workflows/draft-release.yml @@ -0,0 +1,23 @@ +--- +# workflow for drafting releases on GitHub +# see: https://github.com/release-drafter/release-drafter +name: release drafter + +on: + push: + branches: + - main + +jobs: + draft_release: + permissions: + # write permission is required to create a github release + contents: write + # write permission is required for autolabeler + # otherwise, read permission is required at least + pull-requests: write + runs-on: ubuntu-latest + steps: + - uses: release-drafter/release-drafter@v6 + env: + GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} diff --git a/.github/workflows/publish-docs.yml b/.github/workflows/publish-docs.yml new file mode 100644 index 0000000..133c00f --- /dev/null +++ b/.github/workflows/publish-docs.yml @@ -0,0 +1,50 @@ +--- +# used for publishing documentation on push to main or published release +name: publish docs + +on: + push: + branches: + - main + release: + types: + - published + +jobs: + build: + # only build and deploy docs if the actor is not dependabot + if: ${{ github.actor != 'dependabot[bot]' }} + runs-on: ubuntu-22.04 + steps: + - name: Checkout + uses: actions/checkout@v4 + with: + fetch-depth: 0 + - uses: actions/setup-python@v5 + with: + python-version: "3.11" + - name: Setup for poetry + run: | + python -m pip install poetry poetry-dynamic-versioning + - name: poetry deps + run: poetry install + - name: Build documentation + run: | + mkdir pages + touch pages/.nojekyll + cd docs + poetry run sphinx-build src build + # remove any doctrees dirs which aren't needed for publishing + find ./build -type d -name '.doctrees' -exec rm -rf {} + + cp -r build/* ../pages/ + - name: Add index redirector to latest docs + run: | + cp docs/redirector.html pages/redirector.html + - name: Add media folder to latest docs + run: | + cp -r docs/src/media pages/media + - name: Deploy documentation + uses: JamesIves/github-pages-deploy-action@v4 + with: + branch: pages + folder: pages diff --git a/.github/workflows/publish-pypi.yml b/.github/workflows/publish-pypi.yml new file mode 100644 index 0000000..6dd028a --- /dev/null +++ b/.github/workflows/publish-pypi.yml @@ -0,0 +1,34 @@ +--- +# used for publishing packages to pypi on release +name: publish pypi release + +on: + release: + types: + - published + +jobs: + publish_pypi: + runs-on: ubuntu-latest + environment: release + permissions: + # IMPORTANT: this permission is mandatory for trusted publishing + id-token: write + steps: + - name: Checkout + uses: actions/checkout@v4 + with: + fetch-depth: 0 + - name: Python setup + uses: actions/setup-python@v5 + with: + python-version: "3.11" + - name: Setup for poetry + run: | + python -m pip install poetry poetry-dynamic-versioning + - name: Install environment + run: poetry install --no-interaction --no-ansi + - name: poetry build distribution content + run: poetry build + - name: Publish package distributions to PyPI + uses: pypa/gh-action-pypi-publish@release/v1 diff --git a/.github/workflows/run-tests.yml b/.github/workflows/run-tests.yml new file mode 100644 index 0000000..e03a3ce --- /dev/null +++ b/.github/workflows/run-tests.yml @@ -0,0 +1,50 @@ +--- +# used for running tests +name: tests + +on: + push: + branches: [main] + pull_request: + branches: [main] + +jobs: + pre_commit_checks: + runs-on: ubuntu-22.04 + steps: + # checks out the repo + - uses: actions/checkout@v4 + # run pre-commit + - name: Python setup + uses: actions/setup-python@v5 + with: + python-version: "3.11" + - name: Setup for poetry + run: | + python -m pip install poetry + - name: Install environment + run: poetry install --no-interaction --no-ansi + - uses: pre-commit/action@v3.0.1 + run_tests: + strategy: + matrix: + python_version: ["3.9", "3.10", "3.11", "3.12"] + os: [ubuntu-22.04, macos-13] + runs-on: ${{ matrix.os }} + env: + OS: ${{ matrix.os }} + steps: + - name: Checkout + uses: actions/checkout@v4 + - name: Python setup + uses: actions/setup-python@v5 + with: + python-version: ${{ matrix.python_version }} + - name: Setup for poetry + run: | + python -m pip install poetry + - name: Install environment + run: poetry install --no-interaction --no-ansi + - name: Run pytest + # run all tests except those marked generate_report_image + run: poetry run pytest -m "not generate_report_image" diff --git a/.gitignore b/.gitignore index 82f9275..770b919 100644 --- a/.gitignore +++ b/.gitignore @@ -82,34 +82,13 @@ target/ profile_default/ ipython_config.py -# pyenv -# For a library or package, you might want to ignore these files since the code is -# intended to run in multiple environments; otherwise, check them in: -# .python-version - -# pipenv -# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. -# However, in case of collaboration, if having platform-specific dependencies or dependencies -# having no cross-platform support, pipenv may install dependencies that don't work, or not -# install all needed dependencies. -#Pipfile.lock - -# poetry -# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. -# This is especially recommended for binary packages to ensure reproducibility, and is more -# commonly ignored for libraries. -# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control -#poetry.lock - # pdm # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. #pdm.lock # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it # in version control. -# https://pdm.fming.dev/latest/usage/project/#working-with-version-control +# https://pdm.fming.dev/#use-with-ide .pdm.toml -.pdm-python -.pdm-build/ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm __pypackages__/ @@ -154,9 +133,15 @@ dmypy.json # Cython debug symbols cython_debug/ -# PyCharm -# JetBrains specific template is maintained in a separate JetBrains.gitignore that can -# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore -# and can be added to the global gitignore or merged into this file. For a more nuclear -# option (not recommended) you can uncomment the following to ignore the entire idea folder. -#.idea/ +# test data ignores +*.tif +*.tiff +*.sqlite +*.parquet +*.zip +*.csv + +.DS_Store + +# jupyter notebook build files from myst-nb +docs/jupyter_execute diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000..0131be9 --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,73 @@ +# See https://pre-commit.com for more information +# See https://pre-commit.com/hooks.html for more hooks +default_language_version: + python: python3.11 +repos: + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v5.0.0 + hooks: + - id: trailing-whitespace + - id: end-of-file-fixer + exclude: | + (?x)^( + .*\.svg + )$ + - id: check-yaml + - id: check-added-large-files + - id: detect-private-key + - repo: https://github.com/python-poetry/poetry + rev: "1.8.0" + hooks: + - id: poetry-check + - repo: https://github.com/tox-dev/pyproject-fmt + rev: "2.4.3" + hooks: + - id: pyproject-fmt + - repo: https://github.com/codespell-project/codespell + rev: v2.3.0 + hooks: + - id: codespell + exclude: | + (?x)^( + .*\.lock | + .*\.json | + .*\.ipynb | + .*\.cppipe + )$ + - repo: https://github.com/executablebooks/mdformat + rev: 0.7.18 + hooks: + - id: mdformat + additional_dependencies: + - mdformat-gfm + - repo: https://github.com/citation-file-format/cffconvert + rev: b6045d78aac9e02b039703b030588d54d53262ac + hooks: + - id: validate-cff + - repo: https://github.com/adrienverge/yamllint + rev: v1.35.1 + hooks: + - id: yamllint + - repo: https://github.com/rhysd/actionlint + rev: v1.7.3 + hooks: + - id: actionlint + - repo: https://github.com/astral-sh/ruff-pre-commit + rev: "v0.7.0" + hooks: + - id: ruff-format + - id: ruff + - repo: local + hooks: + - id: code-cov-gen + name: Generate code coverage + language: system + entry: poetry run coverage run -m pytest + pass_filenames: false + always_run: true + - repo: https://github.com/Weird-Sheep-Labs/coverage-pre-commit + rev: 0.1.1 + hooks: + - id: coverage-xml + - id: coverage-badge + args: ["-o", "media/coverage-badge.svg"] diff --git a/CITATION.cff b/CITATION.cff new file mode 100644 index 0000000..2fb5a5c --- /dev/null +++ b/CITATION.cff @@ -0,0 +1,163 @@ +# This CITATION.cff file was generated with cffinit. +# Visit https://bit.ly/cffinit to generate yours today! +--- +cff-version: 1.2.0 +title: CytoDataFrame +message: >- + If you use this software, please cite it using the + metadata from this file. +type: software +authors: + - given-names: David + family-names: Bunten + orcid: 'https://orcid.org/0000-0001-6041-3665' + - given-names: Jenna + family-names: Tomkinson + orcid: 'https://orcid.org/0000-0003-2676-5813' + - given-names: Gregory + family-names: Way + orcid: 'https://orcid.org/0000-0002-0503-9348' +repository-code: 'https://github.com/WayScience/CytoDataFrame' +abstract: >- + An in-memory data analysis format for single-cell profiles alongside their corresponding images and segmentation masks. +keywords: + - python + - single-cell-analysis + - profiling + - dataframes + - data-analysis + - way-lab +license: BSD-3-Clause +references: + - authors: + - name: "Way Lab CFReT_data Team" + date-accessed: "2024-05-13" + title: Way Lab CFReT_data CytoTable Data + type: data + repository-code: "https://github.com/WayScience/CFReT_data" + url: "https://github.com/WayScience/CFReT_data/blob/main/3.process_cfret_features/data/converted_profiles/localhost231120090001_converted.parquet" + scope: "localhost231120090001_converted.parquet" + notes: >- + Data from CFReT_data project is used to help validate + expected results. Data is generated from CellProfiler + and CytoTable. + identifiers: + - description: "Github Link with Contributors" + type: url + value: "https://github.com/WayScience/CFReT_data/graphs/contributors" + - authors: + - name: "Way Lab NF1_cellpainting_data Team" + date-accessed: "2024-06-28" + title: Way Lab NF1_cellpainting_data CytoTable Data + type: data + repository-code: "https://github.com/WayScience/nf1_cellpainting_data" + notes: >- + Data from NF1_cellpainting_data project is used to help validate + expected results. Data is generated from CellProfiler + and CytoTable. We use the following files from the repository: + - "Plate_2_nf1_analysis.sqlite" + - "Plate_2.parquet" + identifiers: + - description: "Github Link with Contributors" + type: url + value: "https://github.com/WayScience/nf1_cellpainting_data/graphs/contributors" + - title: >- + Plate 2 (Cell Painting images from Plate 2 for NF1_cellpainting_data project) + type: data + url: https://figshare.com/articles/dataset/Plate_2/22233700 + notes: >- + Image data for related NF1_cellpainting_data parquet sqlite. + authors: + - family-names: Tomkinson + given-names: Jenna + - family-names: Mattson-Hoss + given-names: Michelle + - family-names: Sarnoff + given-names: Herb + - family-names: Way + given-names: Gregory + date-published: "2023-04-12" + identifiers: + - type: doi + value: 10.6084/m9.figshare.22233700.v4 + - authors: + - name: "Way Lab and Alexander Lab Nuclear Speckles Collaboration" + date-accessed: "2024-09-04" + title: Way Lab and Alexander Lab Nuclear Speckles Collaboration Data + type: data + repository-code: https://github.com/WayScience/nuclear_speckle_image_profiling + notes: >- + Data from a collaborative project focusing on nuclear speckles + with the Way Lab and Alexander Lab s used to help validate + expected results. Parquet data is generated from CellProfiler + and CytoTable. Images courtesy of Katherine Alexander + and the Alexander Lab. + identifiers: + - description: "Github Link with Contributors" + type: url + value: "https://github.com/WayScience/nuclear_speckle_image_profiling/graphs/contributors" + - authors: + - family-names: Chandrasekaran + given-names: Srinivas Niranj + - family-names: Cimini + given-names: Beth A. + - family-names: Goodale + given-names: Amy + - family-names: Miller + given-names: Lisa + - family-names: Kost-Alimova + given-names: Maria + - family-names: Jamali + given-names: Nasim + - family-names: Doench + given-names: John G. + - family-names: Fritchman + given-names: Briana + - family-names: Skepner + given-names: Adam + - family-names: Melanson + given-names: Michelle + - family-names: Kalinin + given-names: Alexandr A. + - family-names: Arevalo + given-names: John + - family-names: Haghighi + given-names: Marzieh + - family-names: Caicedo + given-names: Juan C. + - family-names: Kuhn + given-names: Daniel + - family-names: Hernandez + given-names: Desiree + - family-names: Berstler + given-names: James + - family-names: Shafqat-Abbasi + given-names: Hamdah + - family-names: Root + given-names: David E. + - family-names: Swalley + given-names: Susanne E. + - family-names: Garg + given-names: Sakshi + - family-names: Singh + given-names: Shantanu + - family-names: Carpenter + given-names: Anne E. + date-accessed: "2024-08-21" + title: >- + Three million images and morphological profiles of cells treated with matched chemical and genetic perturbations + type: article + issn: 1548-7105 + issue: 6 + journal: Nature Methods + pages: 1114-1121 + volume: 21 + url: https://doi.org/10.1038/s41592-024-02241-6 + date-published: "2024-06-01" + identifiers: + - type: doi + value: 10.1038/s41592-024-02241-6 + notes: >- + JUMP (cpg0000-jump-pilot) was used to help demonstrate CytoDataFrame performance + with large data. See here for more information: + https://github.com/broadinstitute/cellpainting-gallery diff --git a/CODE_OF_CONDUCT.md b/CODE_OF_CONDUCT.md new file mode 100644 index 0000000..6611dd1 --- /dev/null +++ b/CODE_OF_CONDUCT.md @@ -0,0 +1,3 @@ +# Contributor Covenant Code of Conduct + +Please see our full code of conduct at https://WayScience.github.io/CytoDataFrame/main/code_of_conduct diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md new file mode 100644 index 0000000..51e5e5e --- /dev/null +++ b/CONTRIBUTING.md @@ -0,0 +1,3 @@ +# Contributing + +Please see our [contributing](https://WayScience.github.io/CytoDataFrame/main/contributing) documentation for more details on contributions, development, and testing. diff --git a/LICENSE b/LICENSE index 66cabec..92cf4cb 100644 --- a/LICENSE +++ b/LICENSE @@ -1,6 +1,6 @@ BSD 3-Clause License -Copyright (c) 2024, The Way Lab +Copyright (c) 2024, Way Science Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: diff --git a/README.md b/README.md index 7a9e432..dc416d5 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,39 @@ # CytoDataFrame -An in-memory data analysis format for single-cell profiles alongside their corresponding images and segmentation masks. + +[![PyPI - Version](https://img.shields.io/pypi/v/cytodataframe)](https://pypi.org/project/CytoDataFrame/) +[![Build Status](https://github.com/WayScience/CytoDataFrame/actions/workflows/run-tests.yml/badge.svg?branch=main)](https://github.com/WayScience/CytoDataFrame/actions/workflows/run-tests.yml?query=branch%3Amain) +![Coverage Status](https://raw.githubusercontent.com/WayScience/CytoDataFrame/main/media/coverage-badge.svg) +[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff) +[![Poetry](https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json)](https://python-poetry.org/) + +![](https://raw.githubusercontent.com/WayScience/coSMicQC/refs/heads/main/docs/presentations/2024-09-18-SBI2-Conference/images/cosmicqc-example-cytodataframe.png) +_CytoDataFrame extends Pandas functionality to help display single-cell profile data alongside related images._ + +CytoDataFrame is an advanced in-memory data analysis format designed for single-cell profiling, integrating not only the data profiles but also their corresponding microscopy images and segmentation masks. +Traditional single-cell profiling often excludes the associated images from analysis, limiting the scope of research. +CytoDataFrame bridges this gap, offering a purpose-built solution for comprehensive analysis that incorporates both the data and images, empowering more detailed and visual insights in single-cell research. + +CytoDataFrame development began within [coSMicQC](https://github.com/WayScience/coSMicQC) - a single-cell profile quality control package. + +## Installation + +Install CytoDataFrame from source using the following: + +```shell +# install from pypi +pip install cytodataframe + +# or install directly from source +pip install git+https://github.com/WayScience/CytoDataFrame.git +``` + +## Contributing, Development, and Testing + +Please see our [contributing](https://WayScience.github.io/CytoDataFrame/main/contributing) documentation for more details on contributions, development, and testing. + +## References + +- [coSMicQC](https://github.com/WayScience/coSMicQC) +- [pycytominer](https://github.com/cytomining/pycytominer) +- [CellProfiler](https://github.com/CellProfiler/CellProfiler) +- [CytoTable](https://github.com/cytomining/CytoTable) diff --git a/docs/src/_static/cosmicqc-example-cytodataframe.png b/docs/src/_static/cosmicqc-example-cytodataframe.png new file mode 100644 index 0000000..1643d7b Binary files /dev/null and b/docs/src/_static/cosmicqc-example-cytodataframe.png differ diff --git a/docs/src/_static/custom.css b/docs/src/_static/custom.css new file mode 100644 index 0000000..0d87ac3 --- /dev/null +++ b/docs/src/_static/custom.css @@ -0,0 +1,39 @@ +div.cell_output table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 1em; + table-layout: fixed; + background: white; + overflow: scroll; + max-width: 600px; +} + +.pt-5, .py-5 { + padding-top: 1rem !important; +} + +section { + margin-top: 0rem; + margin-bottom: 2rem; +} + +.cell_input div.highlight, .cell_output pre, .cell_input pre, .cell_output .output { + border: none; + box-shadow: none; + overflow: auto; +} + +#main img{ + max-width:600px; +} + +.page-toc { + font-size: .875rem; + padding-top: 0 !important; + color: #494949; + max-height: 100vh; + overflow: hidden auto; + word-break: break-all; +} diff --git a/docs/src/code_of_conduct.md b/docs/src/code_of_conduct.md new file mode 100644 index 0000000..14f473b --- /dev/null +++ b/docs/src/code_of_conduct.md @@ -0,0 +1,132 @@ +# Code of Conduct + +## Our Pledge + +We as members, contributors, and leaders pledge to make participation in our +community a harassment-free experience for everyone, regardless of age, body +size, visible or invisible disability, ethnicity, sex characteristics, gender +identity and expression, level of experience, education, socioeconomic status, +nationality, personal appearance, race, caste, color, religion, or sexual +identity and orientation. + +We pledge to act and interact in ways that contribute to an open, welcoming, +diverse, inclusive, and healthy community. + +## Our Standards + +Examples of behavior that contributes to a positive environment for our +community include: + +- Demonstrating empathy and kindness toward other people +- Being respectful of differing opinions, viewpoints, and experiences +- Giving and gracefully accepting constructive feedback +- Accepting responsibility and apologizing to those affected by our mistakes, + and learning from the experience +- Focusing on what is best not just for us as individuals, but for the overall + community + +Examples of unacceptable behavior include: + +- The use of sexualized language or imagery, and sexual attention or advances of + any kind +- Trolling, insulting or derogatory comments, and personal or political attacks +- Public or private harassment +- Publishing others' private information, such as a physical or email address, + without their explicit permission +- Other conduct which could reasonably be considered inappropriate in a + professional setting + +## Enforcement Responsibilities + +Community leaders are responsible for clarifying and enforcing our standards of +acceptable behavior and will take appropriate and fair corrective action in +response to any behavior that they deem inappropriate, threatening, offensive, +or harmful. + +Community leaders have the right and responsibility to remove, edit, or reject +comments, commits, code, wiki edits, issues, and other contributions that are +not aligned to this Code of Conduct, and will communicate reasons for moderation +decisions when appropriate. + +## Scope + +This Code of Conduct applies within all community spaces, and also applies when +an individual is officially representing the community in public spaces. +Examples of representing our community include using an official email address, +posting via an official social media account, or acting as an appointed +representative at an online or offline event. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported to community leaders responsible for enforcement. +Please open a [new security advisory notice](https://github.com/WayScience/CytoDataFrame/security/advisories/new) (using defaults or "n/a" where unable to fill in the form) to privately notify us of any incidents of this nature. +All complaints will be reviewed and investigated promptly and fairly. + +All community leaders are obligated to respect the privacy and security of the +reporter of any incident. + +## Enforcement Guidelines + +Community leaders will follow these Community Impact Guidelines in determining +the consequences for any action they deem in violation of this Code of Conduct: + +### 1. Correction + +**Community Impact**: Use of inappropriate language or other behavior deemed +unprofessional or unwelcome in the community. + +**Consequence**: A private, written warning from community leaders, providing +clarity around the nature of the violation and an explanation of why the +behavior was inappropriate. A public apology may be requested. + +### 2. Warning + +**Community Impact**: A violation through a single incident or series of +actions. + +**Consequence**: A warning with consequences for continued behavior. No +interaction with the people involved, including unsolicited interaction with +those enforcing the Code of Conduct, for a specified period of time. This +includes avoiding interactions in community spaces as well as external channels +like social media. Violating these terms may lead to a temporary or permanent +ban. + +### 3. Temporary Ban + +**Community Impact**: A serious violation of community standards, including +sustained inappropriate behavior. + +**Consequence**: A temporary ban from any sort of interaction or public +communication with the community for a specified period of time. No public or +private interaction with the people involved, including unsolicited interaction +with those enforcing the Code of Conduct, is allowed during this period. +Violating these terms may lead to a permanent ban. + +### 4. Permanent Ban + +**Community Impact**: Demonstrating a pattern of violation of community +standards, including sustained inappropriate behavior, harassment of an +individual, or aggression toward or disparagement of classes of individuals. + +**Consequence**: A permanent ban from any sort of public interaction within the +community. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], +version 2.1, available at +[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1]. + +Community Impact Guidelines were inspired by +[Mozilla's code of conduct enforcement ladder][mozilla coc]. + +For answers to common questions about this code of conduct, see the FAQ at +[https://www.contributor-covenant.org/faq][faq]. Translations are available at +[https://www.contributor-covenant.org/translations][translations]. + +[faq]: https://www.contributor-covenant.org/faq +[homepage]: https://www.contributor-covenant.org +[mozilla coc]: https://github.com/mozilla/diversity +[translations]: https://www.contributor-covenant.org/translations +[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html diff --git a/docs/src/conf.py b/docs/src/conf.py new file mode 100644 index 0000000..6e50b48 --- /dev/null +++ b/docs/src/conf.py @@ -0,0 +1,100 @@ +# Configuration file for the Sphinx documentation builder. +# +# This file only contains a selection of the most common options. For a full +# list see the documentation: +# https://www.sphinx-doc.org/en/master/usage/configuration.html + +# -- Path setup -------------------------------------------------------------- + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. +# +import pathlib +import sys + +basedir = str(pathlib.Path(__file__).parent.parent.parent.resolve()) + +sys.path.insert(0, basedir) + +# -- Project information ----------------------------------------------------- + +project = "CytoDataFrame" +# is used here due to sphinx decision-making: https://github.com/sphinx-doc/sphinx/issues/8132 +copyright = "2024, WayScience Community" # noqa: A001 +author = "WayScience Community" + +# -- General configuration --------------------------------------------------- + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = [ + "myst_nb", + "sphinx.ext.autodoc", + "sphinx.ext.napoleon", + "sphinx.ext.viewcode", + "sphinx_multiversion", + "sphinx_wagtail_theme", +] + +# Add any paths that contain templates here, relative to this directory. +templates_path = ["_templates"] + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This pattern also affects html_static_path and html_extra_path. +exclude_patterns = [] # type: ignore + +# -- Options for HTML output ------------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +html_theme = "pydata_sphinx_theme" + +html_theme_options = { + "external_links": [ + { + "url": "https://github.com/WayScience/coSMicQC", + "name": "coSMicQC", + }, + ], + "header_links_before_dropdown": 5, + "icon_links": [ + { + "name": "GitHub", + "url": "https://github.com/WayScience/CytoDataFrame", + "icon": "fa-brands fa-github", + }, + ], + "logo": {"text": "CytoDataFrame"}, + "use_edit_page_button": False, + "show_toc_level": 1, + "navbar_align": "left", + "navbar_center": ["navbar-nav"], + "footer_start": ["copyright"], + "footer_center": ["sphinx-version"], + "secondary_sidebar_items": { + "**/*": ["page-toc", "edit-this-page", "sourcelink"], + }, +} + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +html_static_path = ["_static"] +html_css_files = ["custom.css"] + +# set theme options + +# Options for myst-nb +# turn off notebook execution for docs builds +# (we rely on the notebook already being processed +# prior to the publish to help navigate compute needs) +nb_execution_mode = "off" + +# set option to avoid rendering default variables +autodoc_preserve_defaults = True + +# enable anchor creation +myst_heading_anchors = 3 diff --git a/docs/src/contributing.md b/docs/src/contributing.md new file mode 100644 index 0000000..7277af9 --- /dev/null +++ b/docs/src/contributing.md @@ -0,0 +1,135 @@ +# Contributing + +First of all, thank you so much for contributing! 🎉 💯 + +This document contains guidelines on how to most effectively contribute within this repository. + +If you are stuck, please feel free to ask any questions or ask for help. + +## Code of conduct + +This project is governed by our [code of conduct](code_of_conduct.md). By participating, you are expected to uphold this code. +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported to community leaders responsible for enforcement. +Please open a [new security advisory notice](https://github.com/WayScience/CytoDataFrame/security/advisories/new) (using defaults or "n/a" where unable to fill in the form) to privately notify us of any incidents of this nature. + +## Development + +This project leverages development environments managed by Python [Poetry](https://python-poetry.org/). +We leverage interactions with the Docker through Python to achieve reproducible results through containers. +We use [pytest](https://docs.pytest.org/) for testing and [GitHub actions](https://docs.github.com/en/actions) for automated tests. + +### Development setup + +Perform the following steps to setup a Python development environment. + +1. [Install Python](https://www.python.org/downloads/) (we recommend using [`pyenv`](https://github.com/pyenv/pyenv) or similar) +1. [Install Poetry](https://python-poetry.org/docs/#installation) +1. [Install Poetry Environment](https://python-poetry.org/docs/basic-usage/#installing-dependencies): `poetry install` + +### Linting + +Work added to this project is automatically checked using [pre-commit](https://pre-commit.com/) via [GitHub Actions](https://docs.github.com/en/actions). +Pre-commit can work alongside your local [git with git-hooks](https://pre-commit.com/index.html#3-install-the-git-hook-scripts) + +After [installing pre-commit](https://pre-commit.com/#installation) within your development environment, the following command also can perform the same checks within your local development environment: + +```sh +% pre-commit run --all-files +``` + +We use these same checks within our automated tests which are managed by [GitHub Actions workflows](https://docs.github.com/en/actions/using-workflows). +These automated tests generally must pass in order to merge work into this repository. + +### Testing + +Work added to this project is automatically tested using [pytest](https://docs.pytest.org/) via [GitHub Actions](https://docs.github.com/en/actions). +Pytest is installed through the Poetry environment for this project. +We recommend testing your work before opening pull requests with proposed changes. + +You can run pytest on your work using the following example: + +```sh +% poetry run pytest +``` + +## Making changes to this repository + +We welcome anyone to use [GitHub issues](https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues) (requires a GitHub login) or create [pull requests](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests) (to directly make changes within this repository) to modify content found within this repository. + +Specifically, there are several ways to suggest or make changes to this repository: + +1. Open a GitHub issue: https://github.com/WayScience/CytoDataFrame/issues +1. Create a pull request from a forked branch of the repository + +### Creating a pull request + +### Pull requests + +After you’ve decided to contribute code and have written it up, please file a pull request. +We specifically follow a [forked pull request model](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request-from-a-fork). +Please create a fork of this repository, clone the fork, and then create a new, feature-specific branch. +Once you make the necessary changes on this branch, you should file a pull request to incorporate your changes into this (fork upstream) repository. + +The content and description of your pull request are directly related to the speed at which we are able to review, approve, and merge your contribution. +To ensure an efficient review process please perform the following steps: + +1. Follow all instructions in the [pull request template](https://github.com/WayScience/CytoDataFrame/blob/main/.github/PULL_REQUEST_TEMPLATE.md) +1. Triple check that your pull request is adding _one_ specific feature or additional group of content. + Small, bite-sized pull requests move so much faster than large pull requests. +1. After submitting your pull request, ensure that your contribution passes all status checks (e.g. passes all tests) + +Pull request review and approval is required by at least one project maintainer to merge. +We will do our best to review the code addition in a timely fashion. +Ensuring that you follow all steps above will increase our speed and ability to review. +We will check for accuracy, style, code coverage, and scope. + +## Versioning + +We use [`poetry-dynamic-versioning`](https://github.com/mtkennerly/poetry-dynamic-versioning) to help version this software through [`PEP 440`](https://peps.python.org/pep-0440/) standards. +Configuration for versioning is found within the `pyproject.toml` file. +All builds for packages include dynamic version data to help label distinct versions of the software. +`poetry-dynamic-versioning` uses `git` tags to help distinguish version data. +We also use the `__init__.py` file as a place to persist the version data for occaissions where the `git` history is unavailable or unwanted. + +The following command is used to add `poetry-dynamic-versioning` to Poetry for use with this project: `poetry self add "poetry-dynamic-versioning[plugin]"`. +Versioning for the project is intended to align with GitHub Releases which provide `git` tag capabilities. + +### Releases + +We publish source code by using [GitHub Releases](https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases) available [here](https://github.com/wayscience/CytoDataFrame/releases). +We publish a related Python package through the [Python Packaging Index (PyPI)](https://pypi.org/) available [here](https://pypi.org/project/CytoDataFrame/). + +#### Release Publishing Process + +Several manual and automated steps are involved with publishing CytoDataFrame releases. +See below for an overview of how this works. + +Notes about [semantic version](https://en.wikipedia.org/wiki/Software_versioning#Semantic_versioning) (semver) specifications: +CytoDataFrame version specifications are controlled through [`poetry-dynamic-versioning`](https://github.com/mtkennerly/poetry-dynamic-versioning) which leverages [`dunamai`](https://github.com/mtkennerly/dunamai) to create version data based on [git tags](https://git-scm.com/book/en/v2/Git-Basics-Tagging) and commits. +CytoDataFrame release git tags are automatically applied through [GitHub Releases](https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases) and related inferred changes from [`release-drafter`](https://github.com/release-drafter/release-drafter). + +1. Open a pull request and use a repository label for `release-` to label the pull request for visibility with [`release-drafter`](https://github.com/release-drafter/release-drafter) (for example, see [CytoDataFrame#24](https://github.com/wayscience/CytoDataFrame/pull/24) as a reference of a semver patch update). +1. On merging the pull request for the release, a [GitHub Actions workflow](https://docs.github.com/en/actions/using-workflows) defined in `draft-release.yml` leveraging [`release-drafter`](https://github.com/release-drafter/release-drafter) will draft a release for maintainers. +1. The draft GitHub release will include a version tag based on the GitHub PR label applied and `release-drafter`. +1. Make modifications as necessary to the draft GitHub release, then publish the release (the draft release does not normally need additional modifications). +1. On publishing the release, another GitHub Actions workflow defined in `publish-pypi.yml` will run to build and deploy the Python package to PyPI (utilizing the earlier modified `pyproject.toml` semantic version reference for labeling the release). + +## Documentation + +Documentation for this project is published using [Sphinx](https://www.sphinx-doc.org) with markdown and Jupyter notebook file compatibility provided by [myst-parser](https://myst-parser.readthedocs.io/en/latest/) and [myst-nb](https://myst-nb.readthedocs.io/en/latest/) to create a "documentation website" (also known as "docsite"). +The docsite is hosted through [GitHub Pages](https://pages.github.com/) and deployed through automated [GitHub Actions](https://docs.github.com/en/actions) jobs which trigger on pushes to the main branch or the publishing of a new release on GitHub. +Documentation is versioned as outlined earlier sections covering versioning details to help ensure users are able to understand each release independently of one another. + +It can sometimes be useful to test documentation builds locally before proposing changes within a pull request. +See below for some examples of how to build documentation locally. + +```shell +# build single-version sphinx documentation +# (useful for troubleshooting potential issues) +poetry run sphinx-build docs/src docs/build + +# build multi-version sphinx documentation +# (used in production) +poetry run sphinx-multiversion docs/src docs/build +``` diff --git a/docs/src/index.md b/docs/src/index.md new file mode 100644 index 0000000..18c343a --- /dev/null +++ b/docs/src/index.md @@ -0,0 +1,19 @@ + + +```{include} ../../README.md +--- +relative-docs: docs/src/ +relative-images: +--- +``` + +```{toctree} +--- +caption: 'Contents:' +maxdepth: 3 +--- +python-api +presentations +contributing +code_of_conduct +``` diff --git a/docs/src/presentations.md b/docs/src/presentations.md new file mode 100644 index 0000000..651e42e --- /dev/null +++ b/docs/src/presentations.md @@ -0,0 +1,10 @@ +# Presentations + +```{toctree} +--- +caption: "List of presentations" +maxdepth: 2 +glob: +--- +presentations/* +``` diff --git a/docs/src/presentations/sbi2-2024.md b/docs/src/presentations/sbi2-2024.md new file mode 100644 index 0000000..f58ade3 --- /dev/null +++ b/docs/src/presentations/sbi2-2024.md @@ -0,0 +1,7 @@ +# SBI2 Annual Confrerence 2024 Poster + +We presented `CytoDataFrame` within the context of `coSMicQC` during the [SBI2 annual conference (2024)](https://sbi2.org/conference/) poster sessions. + +See below for the [poster](https://wayscience.github.io/coSMicQC/media/sbi2-2024-cosmicqc-poster.pdf) or reference our Zenodo record here: [https://zenodo.org/records/13829960](https://zenodo.org/records/13829960) + + diff --git a/docs/src/python-api.md b/docs/src/python-api.md new file mode 100644 index 0000000..5616923 --- /dev/null +++ b/docs/src/python-api.md @@ -0,0 +1,22 @@ +# Python API + +```{eval-rst} + +cytodataframe.frame +------------------- + +.. automodule:: src.cytodataframe.frame + :members: + :private-members: + :undoc-members: + :show-inheritance: + +cytodataframe.image +------------------- + +.. automodule:: src.cytodataframe.image + :members: + :private-members: + :undoc-members: + :show-inheritance: +``` diff --git a/media/coverage-badge.svg b/media/coverage-badge.svg new file mode 100644 index 0000000..f02f0ef --- /dev/null +++ b/media/coverage-badge.svg @@ -0,0 +1 @@ +coverage: 80.93%coverage80.93% \ No newline at end of file diff --git a/poetry.lock b/poetry.lock new file mode 100644 index 0000000..2004ac5 --- /dev/null +++ b/poetry.lock @@ -0,0 +1,2714 @@ +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. + +[[package]] +name = "accessible-pygments" +version = "0.0.5" +description = "A collection of accessible pygments styles" +optional = false +python-versions = ">=3.9" +files = [ + {file = "accessible_pygments-0.0.5-py3-none-any.whl", hash = "sha256:88ae3211e68a1d0b011504b2ffc1691feafce124b845bd072ab6f9f66f34d4b7"}, + {file = "accessible_pygments-0.0.5.tar.gz", hash = "sha256:40918d3e6a2b619ad424cb91e556bd3bd8865443d9f22f1dcdf79e33c8046872"}, +] + +[package.dependencies] +pygments = ">=1.5" + +[package.extras] +dev = ["pillow", "pkginfo (>=1.10)", "playwright", "pre-commit", "setuptools", "twine (>=5.0)"] +tests = ["hypothesis", "pytest"] + +[[package]] +name = "alabaster" +version = "0.7.16" +description = "A light, configurable Sphinx theme" +optional = false +python-versions = ">=3.9" +files = [ + {file = "alabaster-0.7.16-py3-none-any.whl", hash = "sha256:b46733c07dce03ae4e150330b975c75737fa60f0a7c591b6c8bf4928a28e2c92"}, + {file = "alabaster-0.7.16.tar.gz", hash = "sha256:75a8b99c28a5dad50dd7f8ccdd447a121ddb3892da9e53d1ca5cca3106d58d65"}, +] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "attrs" +version = "23.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, + {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, +] + +[package.extras] +cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] +dev = ["attrs[tests]", "pre-commit"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] +tests = ["attrs[tests-no-zope]", "zope-interface"] +tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] +tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] + +[[package]] +name = "babel" +version = "2.15.0" +description = "Internationalization utilities" +optional = false +python-versions = ">=3.8" +files = [ + {file = "Babel-2.15.0-py3-none-any.whl", hash = "sha256:08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb"}, + {file = "babel-2.15.0.tar.gz", hash = "sha256:8daf0e265d05768bc6c7a314cf1321e9a123afc328cc635c18622a2f30a04413"}, +] + +[package.extras] +dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "beautifulsoup4" +version = "4.12.3" +description = "Screen-scraping library" +optional = false +python-versions = ">=3.6.0" +files = [ + {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, + {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, +] + +[package.dependencies] +soupsieve = ">1.2" + +[package.extras] +cchardet = ["cchardet"] +chardet = ["chardet"] +charset-normalizer = ["charset-normalizer"] +html5lib = ["html5lib"] +lxml = ["lxml"] + +[[package]] +name = "certifi" +version = "2024.7.4" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.7.4-py3-none-any.whl", hash = "sha256:c198e21b1289c2ab85ee4e67bb4b4ef3ead0892059901a8d5b622f24a1101e90"}, + {file = "certifi-2024.7.4.tar.gz", hash = "sha256:5a1e7645bc0ec61a09e26c36f6106dd4cf40c6db3a1fb6352b0244e7fb057c7b"}, +] + +[[package]] +name = "cffi" +version = "1.16.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "cosmicqc" +version = "0.0.11" +description = "coSMicQC is a software tool for single-cell quality control of morphology datasets." +optional = false +python-versions = "<3.13,>=3.9" +files = [ + {file = "cosmicqc-0.0.11-py3-none-any.whl", hash = "sha256:d7cd4c6803a399a0b92008348e0d233496e08c03d623bd5524db3cc9a53af19b"}, + {file = "cosmicqc-0.0.11.tar.gz", hash = "sha256:74506f85b7935e6d1e1c221152a6c26a86b9772e5546dbb44689b109b75265ce"}, +] + +[package.dependencies] +fire = ">=0.6.0,<0.7.0" +ipython = ">=8.12.3,<9.0.0" +jinja2 = ">=3.1.4,<4.0.0" +kaleido = "0.2.1" +opencv-python = ">=4.10.0.84,<5.0.0.0" +pandas = {version = ">=2.2.2,<3.0.0", markers = "python_version >= \"3.9\""} +plotly = ">=5.22.0,<6.0.0" +pyarrow = ">=16.0.0,<17.0.0" +pywavelets = {version = ">1.4.1", markers = "python_version >= \"3.9\""} +pyyaml = ">=6.0.1,<7.0.0" +scikit-image = {version = ">0.19.3", markers = "python_version >= \"3.9\""} +scipy = {version = ">=1.13.0,<2.0.0", markers = "python_version >= \"3.9\""} + +[[package]] +name = "coverage" +version = "7.6.0" +description = "Code coverage measurement for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "coverage-7.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dff044f661f59dace805eedb4a7404c573b6ff0cdba4a524141bc63d7be5c7fd"}, + {file = "coverage-7.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a8659fd33ee9e6ca03950cfdcdf271d645cf681609153f218826dd9805ab585c"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7792f0ab20df8071d669d929c75c97fecfa6bcab82c10ee4adb91c7a54055463"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d4b3cd1ca7cd73d229487fa5caca9e4bc1f0bca96526b922d61053ea751fe791"}, + {file = "coverage-7.6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e7e128f85c0b419907d1f38e616c4f1e9f1d1b37a7949f44df9a73d5da5cd53c"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a94925102c89247530ae1dab7dc02c690942566f22e189cbd53579b0693c0783"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:dcd070b5b585b50e6617e8972f3fbbee786afca71b1936ac06257f7e178f00f6"}, + {file = "coverage-7.6.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d50a252b23b9b4dfeefc1f663c568a221092cbaded20a05a11665d0dbec9b8fb"}, + {file = "coverage-7.6.0-cp310-cp310-win32.whl", hash = "sha256:0e7b27d04131c46e6894f23a4ae186a6a2207209a05df5b6ad4caee6d54a222c"}, + {file = "coverage-7.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:54dece71673b3187c86226c3ca793c5f891f9fc3d8aa183f2e3653da18566169"}, + {file = "coverage-7.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c7b525ab52ce18c57ae232ba6f7010297a87ced82a2383b1afd238849c1ff933"}, + {file = "coverage-7.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4bea27c4269234e06f621f3fac3925f56ff34bc14521484b8f66a580aacc2e7d"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed8d1d1821ba5fc88d4a4f45387b65de52382fa3ef1f0115a4f7a20cdfab0e94"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:01c322ef2bbe15057bc4bf132b525b7e3f7206f071799eb8aa6ad1940bcf5fb1"}, + {file = "coverage-7.6.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03cafe82c1b32b770a29fd6de923625ccac3185a54a5e66606da26d105f37dac"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0d1b923fc4a40c5832be4f35a5dab0e5ff89cddf83bb4174499e02ea089daf57"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4b03741e70fb811d1a9a1d75355cf391f274ed85847f4b78e35459899f57af4d"}, + {file = "coverage-7.6.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a73d18625f6a8a1cbb11eadc1d03929f9510f4131879288e3f7922097a429f63"}, + {file = "coverage-7.6.0-cp311-cp311-win32.whl", hash = "sha256:65fa405b837060db569a61ec368b74688f429b32fa47a8929a7a2f9b47183713"}, + {file = "coverage-7.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:6379688fb4cfa921ae349c76eb1a9ab26b65f32b03d46bb0eed841fd4cb6afb1"}, + {file = "coverage-7.6.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f7db0b6ae1f96ae41afe626095149ecd1b212b424626175a6633c2999eaad45b"}, + {file = "coverage-7.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bbdf9a72403110a3bdae77948b8011f644571311c2fb35ee15f0f10a8fc082e8"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cc44bf0315268e253bf563f3560e6c004efe38f76db03a1558274a6e04bf5d5"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:da8549d17489cd52f85a9829d0e1d91059359b3c54a26f28bec2c5d369524807"}, + {file = "coverage-7.6.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0086cd4fc71b7d485ac93ca4239c8f75732c2ae3ba83f6be1c9be59d9e2c6382"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1fad32ee9b27350687035cb5fdf9145bc9cf0a094a9577d43e909948ebcfa27b"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:044a0985a4f25b335882b0966625270a8d9db3d3409ddc49a4eb00b0ef5e8cee"}, + {file = "coverage-7.6.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:76d5f82213aa78098b9b964ea89de4617e70e0d43e97900c2778a50856dac605"}, + {file = "coverage-7.6.0-cp312-cp312-win32.whl", hash = "sha256:3c59105f8d58ce500f348c5b56163a4113a440dad6daa2294b5052a10db866da"}, + {file = "coverage-7.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:ca5d79cfdae420a1d52bf177de4bc2289c321d6c961ae321503b2ca59c17ae67"}, + {file = "coverage-7.6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d39bd10f0ae453554798b125d2f39884290c480f56e8a02ba7a6ed552005243b"}, + {file = "coverage-7.6.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:beb08e8508e53a568811016e59f3234d29c2583f6b6e28572f0954a6b4f7e03d"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b2e16f4cd2bc4d88ba30ca2d3bbf2f21f00f382cf4e1ce3b1ddc96c634bc48ca"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6616d1c9bf1e3faea78711ee42a8b972367d82ceae233ec0ac61cc7fec09fa6b"}, + {file = "coverage-7.6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad4567d6c334c46046d1c4c20024de2a1c3abc626817ae21ae3da600f5779b44"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d17c6a415d68cfe1091d3296ba5749d3d8696e42c37fca5d4860c5bf7b729f03"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:9146579352d7b5f6412735d0f203bbd8d00113a680b66565e205bc605ef81bc6"}, + {file = "coverage-7.6.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:cdab02a0a941af190df8782aafc591ef3ad08824f97850b015c8c6a8b3877b0b"}, + {file = "coverage-7.6.0-cp38-cp38-win32.whl", hash = "sha256:df423f351b162a702c053d5dddc0fc0ef9a9e27ea3f449781ace5f906b664428"}, + {file = "coverage-7.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:f2501d60d7497fd55e391f423f965bbe9e650e9ffc3c627d5f0ac516026000b8"}, + {file = "coverage-7.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7221f9ac9dad9492cecab6f676b3eaf9185141539d5c9689d13fd6b0d7de840c"}, + {file = "coverage-7.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ddaaa91bfc4477d2871442bbf30a125e8fe6b05da8a0015507bfbf4718228ab2"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c4cbe651f3904e28f3a55d6f371203049034b4ddbce65a54527a3f189ca3b390"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:831b476d79408ab6ccfadaaf199906c833f02fdb32c9ab907b1d4aa0713cfa3b"}, + {file = "coverage-7.6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:46c3d091059ad0b9c59d1034de74a7f36dcfa7f6d3bde782c49deb42438f2450"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:4d5fae0a22dc86259dee66f2cc6c1d3e490c4a1214d7daa2a93d07491c5c04b6"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:07ed352205574aad067482e53dd606926afebcb5590653121063fbf4e2175166"}, + {file = "coverage-7.6.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:49c76cdfa13015c4560702574bad67f0e15ca5a2872c6a125f6327ead2b731dd"}, + {file = "coverage-7.6.0-cp39-cp39-win32.whl", hash = "sha256:482855914928c8175735a2a59c8dc5806cf7d8f032e4820d52e845d1f731dca2"}, + {file = "coverage-7.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:543ef9179bc55edfd895154a51792b01c017c87af0ebaae092720152e19e42ca"}, + {file = "coverage-7.6.0-pp38.pp39.pp310-none-any.whl", hash = "sha256:6fe885135c8a479d3e37a7aae61cbd3a0fb2deccb4dda3c25f92a49189f766d6"}, + {file = "coverage-7.6.0.tar.gz", hash = "sha256:289cc803fa1dc901f84701ac10c9ee873619320f2f9aff38794db4a4a0268d51"}, +] + +[package.extras] +toml = ["tomli"] + +[[package]] +name = "debugpy" +version = "1.8.2" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.2-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:7ee2e1afbf44b138c005e4380097d92532e1001580853a7cb40ed84e0ef1c3d2"}, + {file = "debugpy-1.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f8c3f7c53130a070f0fc845a0f2cee8ed88d220d6b04595897b66605df1edd6"}, + {file = "debugpy-1.8.2-cp310-cp310-win32.whl", hash = "sha256:f179af1e1bd4c88b0b9f0fa153569b24f6b6f3de33f94703336363ae62f4bf47"}, + {file = "debugpy-1.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:0600faef1d0b8d0e85c816b8bb0cb90ed94fc611f308d5fde28cb8b3d2ff0fe3"}, + {file = "debugpy-1.8.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:8a13417ccd5978a642e91fb79b871baded925d4fadd4dfafec1928196292aa0a"}, + {file = "debugpy-1.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acdf39855f65c48ac9667b2801234fc64d46778021efac2de7e50907ab90c634"}, + {file = "debugpy-1.8.2-cp311-cp311-win32.whl", hash = "sha256:2cbd4d9a2fc5e7f583ff9bf11f3b7d78dfda8401e8bb6856ad1ed190be4281ad"}, + {file = "debugpy-1.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:d3408fddd76414034c02880e891ea434e9a9cf3a69842098ef92f6e809d09afa"}, + {file = "debugpy-1.8.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:5d3ccd39e4021f2eb86b8d748a96c766058b39443c1f18b2dc52c10ac2757835"}, + {file = "debugpy-1.8.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:62658aefe289598680193ff655ff3940e2a601765259b123dc7f89c0239b8cd3"}, + {file = "debugpy-1.8.2-cp312-cp312-win32.whl", hash = "sha256:bd11fe35d6fd3431f1546d94121322c0ac572e1bfb1f6be0e9b8655fb4ea941e"}, + {file = "debugpy-1.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:15bc2f4b0f5e99bf86c162c91a74c0631dbd9cef3c6a1d1329c946586255e859"}, + {file = "debugpy-1.8.2-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:5a019d4574afedc6ead1daa22736c530712465c0c4cd44f820d803d937531b2d"}, + {file = "debugpy-1.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40f062d6877d2e45b112c0bbade9a17aac507445fd638922b1a5434df34aed02"}, + {file = "debugpy-1.8.2-cp38-cp38-win32.whl", hash = "sha256:c78ba1680f1015c0ca7115671fe347b28b446081dada3fedf54138f44e4ba031"}, + {file = "debugpy-1.8.2-cp38-cp38-win_amd64.whl", hash = "sha256:cf327316ae0c0e7dd81eb92d24ba8b5e88bb4d1b585b5c0d32929274a66a5210"}, + {file = "debugpy-1.8.2-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:1523bc551e28e15147815d1397afc150ac99dbd3a8e64641d53425dba57b0ff9"}, + {file = "debugpy-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e24ccb0cd6f8bfaec68d577cb49e9c680621c336f347479b3fce060ba7c09ec1"}, + {file = "debugpy-1.8.2-cp39-cp39-win32.whl", hash = "sha256:7f8d57a98c5a486c5c7824bc0b9f2f11189d08d73635c326abef268f83950326"}, + {file = "debugpy-1.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:16c8dcab02617b75697a0a925a62943e26a0330da076e2a10437edd9f0bf3755"}, + {file = "debugpy-1.8.2-py2.py3-none-any.whl", hash = "sha256:16e16df3a98a35c63c3ab1e4d19be4cbc7fdda92d9ddc059294f18910928e0ca"}, + {file = "debugpy-1.8.2.zip", hash = "sha256:95378ed08ed2089221896b9b3a8d021e642c24edc8fef20e5d4342ca8be65c00"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "docutils" +version = "0.21.2" +description = "Docutils -- Python Documentation Utilities" +optional = false +python-versions = ">=3.9" +files = [ + {file = "docutils-0.21.2-py3-none-any.whl", hash = "sha256:dafca5b9e384f0e419294eb4d2ff9fa826435bf15f15b7bd45723e8ad76811b2"}, + {file = "docutils-0.21.2.tar.gz", hash = "sha256:3a6b18732edf182daa3cd12775bbb338cf5691468f91eeeb109deff6ebfa986f"}, +] + +[[package]] +name = "dunamai" +version = "1.22.0" +description = "Dynamic version generation" +optional = false +python-versions = ">=3.5" +files = [ + {file = "dunamai-1.22.0-py3-none-any.whl", hash = "sha256:eab3894b31e145bd028a74b13491c57db01986a7510482c9b5fff3b4e53d77b7"}, + {file = "dunamai-1.22.0.tar.gz", hash = "sha256:375a0b21309336f0d8b6bbaea3e038c36f462318c68795166e31f9873fdad676"}, +] + +[package.dependencies] +packaging = ">=20.9" + +[[package]] +name = "exceptiongroup" +version = "1.2.1" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, + {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fastjsonschema" +version = "2.20.0" +description = "Fastest Python implementation of JSON schema" +optional = false +python-versions = "*" +files = [ + {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"}, + {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"}, +] + +[package.extras] +devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] + +[[package]] +name = "fire" +version = "0.6.0" +description = "A library for automatically generating command line interfaces." +optional = false +python-versions = "*" +files = [ + {file = "fire-0.6.0.tar.gz", hash = "sha256:54ec5b996ecdd3c0309c800324a0703d6da512241bc73b553db959d98de0aa66"}, +] + +[package.dependencies] +six = "*" +termcolor = "*" + +[[package]] +name = "greenlet" +version = "3.0.3" +description = "Lightweight in-process concurrent programming" +optional = false +python-versions = ">=3.7" +files = [ + {file = "greenlet-3.0.3-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:9da2bd29ed9e4f15955dd1595ad7bc9320308a3b766ef7f837e23ad4b4aac31a"}, + {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d353cadd6083fdb056bb46ed07e4340b0869c305c8ca54ef9da3421acbdf6881"}, + {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dca1e2f3ca00b84a396bc1bce13dd21f680f035314d2379c4160c98153b2059b"}, + {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3ed7fb269f15dc662787f4119ec300ad0702fa1b19d2135a37c2c4de6fadfd4a"}, + {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd4f49ae60e10adbc94b45c0b5e6a179acc1736cf7a90160b404076ee283cf83"}, + {file = "greenlet-3.0.3-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:73a411ef564e0e097dbe7e866bb2dda0f027e072b04da387282b02c308807405"}, + {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:7f362975f2d179f9e26928c5b517524e89dd48530a0202570d55ad6ca5d8a56f"}, + {file = "greenlet-3.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:649dde7de1a5eceb258f9cb00bdf50e978c9db1b996964cd80703614c86495eb"}, + {file = "greenlet-3.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:68834da854554926fbedd38c76e60c4a2e3198c6fbed520b106a8986445caaf9"}, + {file = "greenlet-3.0.3-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:b1b5667cced97081bf57b8fa1d6bfca67814b0afd38208d52538316e9422fc61"}, + {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52f59dd9c96ad2fc0d5724107444f76eb20aaccb675bf825df6435acb7703559"}, + {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:afaff6cf5200befd5cec055b07d1c0a5a06c040fe5ad148abcd11ba6ab9b114e"}, + {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe754d231288e1e64323cfad462fcee8f0288654c10bdf4f603a39ed923bef33"}, + {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2797aa5aedac23af156bbb5a6aa2cd3427ada2972c828244eb7d1b9255846379"}, + {file = "greenlet-3.0.3-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7f009caad047246ed379e1c4dbcb8b020f0a390667ea74d2387be2998f58a22"}, + {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c5e1536de2aad7bf62e27baf79225d0d64360d4168cf2e6becb91baf1ed074f3"}, + {file = "greenlet-3.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:894393ce10ceac937e56ec00bb71c4c2f8209ad516e96033e4b3b1de270e200d"}, + {file = "greenlet-3.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:1ea188d4f49089fc6fb283845ab18a2518d279c7cd9da1065d7a84e991748728"}, + {file = "greenlet-3.0.3-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:70fb482fdf2c707765ab5f0b6655e9cfcf3780d8d87355a063547b41177599be"}, + {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4d1ac74f5c0c0524e4a24335350edad7e5f03b9532da7ea4d3c54d527784f2e"}, + {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149e94a2dd82d19838fe4b2259f1b6b9957d5ba1b25640d2380bea9c5df37676"}, + {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:15d79dd26056573940fcb8c7413d84118086f2ec1a8acdfa854631084393efcc"}, + {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:881b7db1ebff4ba09aaaeae6aa491daeb226c8150fc20e836ad00041bcb11230"}, + {file = "greenlet-3.0.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fcd2469d6a2cf298f198f0487e0a5b1a47a42ca0fa4dfd1b6862c999f018ebbf"}, + {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1f672519db1796ca0d8753f9e78ec02355e862d0998193038c7073045899f305"}, + {file = "greenlet-3.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2516a9957eed41dd8f1ec0c604f1cdc86758b587d964668b5b196a9db5bfcde6"}, + {file = "greenlet-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:bba5387a6975598857d86de9eac14210a49d554a77eb8261cc68b7d082f78ce2"}, + {file = "greenlet-3.0.3-cp37-cp37m-macosx_11_0_universal2.whl", hash = "sha256:5b51e85cb5ceda94e79d019ed36b35386e8c37d22f07d6a751cb659b180d5274"}, + {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daf3cb43b7cf2ba96d614252ce1684c1bccee6b2183a01328c98d36fcd7d5cb0"}, + {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99bf650dc5d69546e076f413a87481ee1d2d09aaaaaca058c9251b6d8c14783f"}, + {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2dd6e660effd852586b6a8478a1d244b8dc90ab5b1321751d2ea15deb49ed414"}, + {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e3391d1e16e2a5a1507d83e4a8b100f4ee626e8eca43cf2cadb543de69827c4c"}, + {file = "greenlet-3.0.3-cp37-cp37m-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e1f145462f1fa6e4a4ae3c0f782e580ce44d57c8f2c7aae1b6fa88c0b2efdb41"}, + {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1a7191e42732df52cb5f39d3527217e7ab73cae2cb3694d241e18f53d84ea9a7"}, + {file = "greenlet-3.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:0448abc479fab28b00cb472d278828b3ccca164531daab4e970a0458786055d6"}, + {file = "greenlet-3.0.3-cp37-cp37m-win32.whl", hash = "sha256:b542be2440edc2d48547b5923c408cbe0fc94afb9f18741faa6ae970dbcb9b6d"}, + {file = "greenlet-3.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:01bc7ea167cf943b4c802068e178bbf70ae2e8c080467070d01bfa02f337ee67"}, + {file = "greenlet-3.0.3-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:1996cb9306c8595335bb157d133daf5cf9f693ef413e7673cb07e3e5871379ca"}, + {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ddc0f794e6ad661e321caa8d2f0a55ce01213c74722587256fb6566049a8b04"}, + {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c9db1c18f0eaad2f804728c67d6c610778456e3e1cc4ab4bbd5eeb8e6053c6fc"}, + {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7170375bcc99f1a2fbd9c306f5be8764eaf3ac6b5cb968862cad4c7057756506"}, + {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b66c9c1e7ccabad3a7d037b2bcb740122a7b17a53734b7d72a344ce39882a1b"}, + {file = "greenlet-3.0.3-cp38-cp38-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:098d86f528c855ead3479afe84b49242e174ed262456c342d70fc7f972bc13c4"}, + {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:81bb9c6d52e8321f09c3d165b2a78c680506d9af285bfccbad9fb7ad5a5da3e5"}, + {file = "greenlet-3.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fd096eb7ffef17c456cfa587523c5f92321ae02427ff955bebe9e3c63bc9f0da"}, + {file = "greenlet-3.0.3-cp38-cp38-win32.whl", hash = "sha256:d46677c85c5ba00a9cb6f7a00b2bfa6f812192d2c9f7d9c4f6a55b60216712f3"}, + {file = "greenlet-3.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:419b386f84949bf0e7c73e6032e3457b82a787c1ab4a0e43732898a761cc9dbf"}, + {file = "greenlet-3.0.3-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:da70d4d51c8b306bb7a031d5cff6cc25ad253affe89b70352af5f1cb68e74b53"}, + {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:086152f8fbc5955df88382e8a75984e2bb1c892ad2e3c80a2508954e52295257"}, + {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d73a9fe764d77f87f8ec26a0c85144d6a951a6c438dfe50487df5595c6373eac"}, + {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7dcbe92cc99f08c8dd11f930de4d99ef756c3591a5377d1d9cd7dd5e896da71"}, + {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1551a8195c0d4a68fac7a4325efac0d541b48def35feb49d803674ac32582f61"}, + {file = "greenlet-3.0.3-cp39-cp39-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:64d7675ad83578e3fc149b617a444fab8efdafc9385471f868eb5ff83e446b8b"}, + {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b37eef18ea55f2ffd8f00ff8fe7c8d3818abd3e25fb73fae2ca3b672e333a7a6"}, + {file = "greenlet-3.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:77457465d89b8263bca14759d7c1684df840b6811b2499838cc5b040a8b5b113"}, + {file = "greenlet-3.0.3-cp39-cp39-win32.whl", hash = "sha256:57e8974f23e47dac22b83436bdcf23080ade568ce77df33159e019d161ce1d1e"}, + {file = "greenlet-3.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:c5ee858cfe08f34712f548c3c363e807e7186f03ad7a5039ebadb29e8c6be067"}, + {file = "greenlet-3.0.3.tar.gz", hash = "sha256:43374442353259554ce33599da8b692d5aa96f8976d567d4badf263371fbe491"}, +] + +[package.extras] +docs = ["Sphinx", "furo"] +test = ["objgraph", "psutil"] + +[[package]] +name = "html2image" +version = "2.0.4.3" +description = "Package acting as a wrapper around the headless mode of existing web browsers to generate images from URLs and from HTML+CSS strings or files." +optional = false +python-versions = ">=3.6,<4.0" +files = [ + {file = "html2image-2.0.4.3-py3-none-any.whl", hash = "sha256:e39bc1be8cb39bd36a1b9412d22f5db88d56e762f9ad3461124fa05fa7982945"}, + {file = "html2image-2.0.4.3.tar.gz", hash = "sha256:878e69122eabf8263415784888c4366f04a8b301516fc5d13b9e0acf8db591e7"}, +] + +[package.dependencies] +requests = "*" +websocket-client = ">=1.0.0,<2.0.0" + +[[package]] +name = "idna" +version = "3.7" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.5" +files = [ + {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, + {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, +] + +[[package]] +name = "imageio" +version = "2.34.2" +description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats." +optional = false +python-versions = ">=3.8" +files = [ + {file = "imageio-2.34.2-py3-none-any.whl", hash = "sha256:a0bb27ec9d5bab36a9f4835e51b21d2cb099e1f78451441f94687ff3404b79f8"}, + {file = "imageio-2.34.2.tar.gz", hash = "sha256:5c0c0ee8faa018a1c42f649b90395dd4d3bb6187c09053a0cd6f1fdd51bbff5e"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=8.3.2" + +[package.extras] +all-plugins = ["astropy", "av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"] +all-plugins-pypy = ["av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"] +build = ["wheel"] +dev = ["black", "flake8", "fsspec[github]", "pytest", "pytest-cov"] +docs = ["numpydoc", "pydata-sphinx-theme", "sphinx (<6)"] +ffmpeg = ["imageio-ffmpeg", "psutil"] +fits = ["astropy"] +full = ["astropy", "av", "black", "flake8", "fsspec[github]", "gdal", "imageio-ffmpeg", "itk", "numpydoc", "pillow-heif", "psutil", "pydata-sphinx-theme", "pytest", "pytest-cov", "sphinx (<6)", "tifffile", "wheel"] +gdal = ["gdal"] +itk = ["itk"] +linting = ["black", "flake8"] +pillow-heif = ["pillow-heif"] +pyav = ["av"] +test = ["fsspec[github]", "pytest", "pytest-cov"] +tifffile = ["tifffile"] + +[[package]] +name = "imagesize" +version = "1.4.1" +description = "Getting image size from png/jpeg/jpeg2000/gif file" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "imagesize-1.4.1-py2.py3-none-any.whl", hash = "sha256:0d8d18d08f840c19d0ee7ca1fd82490fdc3729b7ac93f49870406ddde8ef8d8b"}, + {file = "imagesize-1.4.1.tar.gz", hash = "sha256:69150444affb9cb0d5cc5a92b3676f0b2fb7cd9ae39e947a5e11a36b4497cd4a"}, +] + +[[package]] +name = "importlib-metadata" +version = "8.0.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-8.0.0-py3-none-any.whl", hash = "sha256:15584cf2b1bf449d98ff8a6ff1abef57bf20f3ac6454f431736cd3e660921b2f"}, + {file = "importlib_metadata-8.0.0.tar.gz", hash = "sha256:188bd24e4c346d3f0a933f275c2fec67050326a856b9a359881d7c2a697e8812"}, +] + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +perf = ["ipython"] +test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] + +[[package]] +name = "iniconfig" +version = "2.0.0" +description = "brain-dead simple config-ini parsing" +optional = false +python-versions = ">=3.7" +files = [ + {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, + {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, +] + +[[package]] +name = "ipykernel" +version = "6.29.4" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"}, + {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "jsonschema" +version = "4.22.0" +description = "An implementation of JSON Schema validation for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"}, + {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +jsonschema-specifications = ">=2023.03.6" +referencing = ">=0.28.4" +rpds-py = ">=0.7.1" + +[package.extras] +format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] + +[[package]] +name = "jsonschema-specifications" +version = "2023.12.1" +description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"}, + {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"}, +] + +[package.dependencies] +referencing = ">=0.31.0" + +[[package]] +name = "jupyter-cache" +version = "1.0.0" +description = "A defined interface for working with a cache of jupyter notebooks." +optional = false +python-versions = ">=3.9" +files = [ + {file = "jupyter_cache-1.0.0-py3-none-any.whl", hash = "sha256:594b1c4e29b488b36547e12477645f489dbdc62cc939b2408df5679f79245078"}, + {file = "jupyter_cache-1.0.0.tar.gz", hash = "sha256:d0fa7d7533cd5798198d8889318269a8c1382ed3b22f622c09a9356521f48687"}, +] + +[package.dependencies] +attrs = "*" +click = "*" +importlib-metadata = "*" +nbclient = ">=0.2" +nbformat = "*" +pyyaml = "*" +sqlalchemy = ">=1.3.12,<3" +tabulate = "*" + +[package.extras] +cli = ["click-log"] +code-style = ["pre-commit (>=2.12)"] +rtd = ["ipykernel", "jupytext", "myst-nb", "nbdime", "sphinx-book-theme", "sphinx-copybutton"] +testing = ["coverage", "ipykernel", "jupytext", "matplotlib", "nbdime", "nbformat (>=5.1)", "numpy", "pandas", "pytest (>=6,<8)", "pytest-cov", "pytest-regressions", "sympy"] + +[[package]] +name = "jupyter-client" +version = "8.6.2" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "kaleido" +version = "0.2.1" +description = "Static image export for web-based visualization libraries with zero dependencies" +optional = false +python-versions = "*" +files = [ + {file = "kaleido-0.2.1-py2.py3-none-macosx_10_11_x86_64.whl", hash = "sha256:ca6f73e7ff00aaebf2843f73f1d3bacde1930ef5041093fe76b83a15785049a7"}, + {file = "kaleido-0.2.1-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:bb9a5d1f710357d5d432ee240ef6658a6d124c3e610935817b4b42da9c787c05"}, + {file = "kaleido-0.2.1-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:aa21cf1bf1c78f8fa50a9f7d45e1003c387bd3d6fe0a767cfbbf344b95bdc3a8"}, + {file = "kaleido-0.2.1-py2.py3-none-manylinux2014_aarch64.whl", hash = "sha256:845819844c8082c9469d9c17e42621fbf85c2b237ef8a86ec8a8527f98b6512a"}, + {file = "kaleido-0.2.1-py2.py3-none-win32.whl", hash = "sha256:ecc72635860be616c6b7161807a65c0dbd9b90c6437ac96965831e2e24066552"}, + {file = "kaleido-0.2.1-py2.py3-none-win_amd64.whl", hash = "sha256:4670985f28913c2d063c5734d125ecc28e40810141bdb0a46f15b76c1d45f23c"}, +] + +[[package]] +name = "lazy-loader" +version = "0.4" +description = "Makes it easy to load subpackages and functions on demand." +optional = false +python-versions = ">=3.7" +files = [ + {file = "lazy_loader-0.4-py3-none-any.whl", hash = "sha256:342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc"}, + {file = "lazy_loader-0.4.tar.gz", hash = "sha256:47c75182589b91a4e1a85a136c074285a5ad4d9f39c63e0d7fb76391c4574cd1"}, +] + +[package.dependencies] +packaging = "*" + +[package.extras] +dev = ["changelist (==0.5)"] +lint = ["pre-commit (==3.7.0)"] +test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"] + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +description = "Python port of markdown-it. Markdown parsing, done right!" +optional = false +python-versions = ">=3.8" +files = [ + {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"}, + {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"}, +] + +[package.dependencies] +mdurl = ">=0.1,<1.0" + +[package.extras] +benchmarking = ["psutil", "pytest", "pytest-benchmark"] +code-style = ["pre-commit (>=3.0,<4.0)"] +compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] +linkify = ["linkify-it-py (>=1,<3)"] +plugins = ["mdit-py-plugins"] +profiling = ["gprof2dot"] +rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + +[[package]] +name = "markupsafe" +version = "2.1.5" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mdit-py-plugins" +version = "0.4.1" +description = "Collection of plugins for markdown-it-py" +optional = false +python-versions = ">=3.8" +files = [ + {file = "mdit_py_plugins-0.4.1-py3-none-any.whl", hash = "sha256:1020dfe4e6bfc2c79fb49ae4e3f5b297f5ccd20f010187acc52af2921e27dc6a"}, + {file = "mdit_py_plugins-0.4.1.tar.gz", hash = "sha256:834b8ac23d1cd60cec703646ffd22ae97b7955a6d596eb1d304be1e251ae499c"}, +] + +[package.dependencies] +markdown-it-py = ">=1.0.0,<4.0.0" + +[package.extras] +code-style = ["pre-commit"] +rtd = ["myst-parser", "sphinx-book-theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + +[[package]] +name = "mdurl" +version = "0.1.2" +description = "Markdown URL utilities" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, + {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, +] + +[[package]] +name = "myst-nb" +version = "1.1.1" +description = "A Jupyter Notebook Sphinx reader built on top of the MyST markdown parser." +optional = false +python-versions = ">=3.9" +files = [ + {file = "myst_nb-1.1.1-py3-none-any.whl", hash = "sha256:8b8f9085287d948eef46cb3764aafc21915e0e981882b8c742719f5b1a84c36f"}, + {file = "myst_nb-1.1.1.tar.gz", hash = "sha256:74227c11f76d03494f43b7788659b161b94f4dedef230a2912412bc8c3c9e553"}, +] + +[package.dependencies] +importlib_metadata = "*" +ipykernel = "*" +ipython = "*" +jupyter-cache = ">=0.5" +myst-parser = ">=1.0.0" +nbclient = "*" +nbformat = ">=5.0" +pyyaml = "*" +sphinx = ">=5" +typing-extensions = "*" + +[package.extras] +code-style = ["pre-commit"] +rtd = ["alabaster", "altair", "bokeh", "coconut (>=1.4.3,<3.1.0)", "ipykernel (>=5.5,<7.0)", "ipywidgets", "jupytext (>=1.11.2,<1.16.0)", "matplotlib", "numpy", "pandas", "plotly", "sphinx-book-theme (>=0.3)", "sphinx-copybutton", "sphinx-design (>=0.4.0,<0.5.0)", "sphinxcontrib-bibtex", "sympy"] +testing = ["beautifulsoup4", "coverage (>=6.4,<8.0)", "ipykernel (>=5.5,<7.0)", "ipython (!=8.1.0,<8.17)", "ipywidgets (>=8)", "jupytext (>=1.11.2,<1.16.0)", "matplotlib (==3.7.*)", "nbdime", "numpy", "pandas (==1.5.*)", "pyarrow", "pytest (>=7.1,<8.0)", "pytest-cov (>=3,<5)", "pytest-param-files (>=0.3.3,<0.4.0)", "pytest-regressions", "sympy (>=1.10.1)"] + +[[package]] +name = "myst-parser" +version = "3.0.1" +description = "An extended [CommonMark](https://spec.commonmark.org/) compliant parser," +optional = false +python-versions = ">=3.8" +files = [ + {file = "myst_parser-3.0.1-py3-none-any.whl", hash = "sha256:6457aaa33a5d474aca678b8ead9b3dc298e89c68e67012e73146ea6fd54babf1"}, + {file = "myst_parser-3.0.1.tar.gz", hash = "sha256:88f0cb406cb363b077d176b51c476f62d60604d68a8dcdf4832e080441301a87"}, +] + +[package.dependencies] +docutils = ">=0.18,<0.22" +jinja2 = "*" +markdown-it-py = ">=3.0,<4.0" +mdit-py-plugins = ">=0.4,<1.0" +pyyaml = "*" +sphinx = ">=6,<8" + +[package.extras] +code-style = ["pre-commit (>=3.0,<4.0)"] +linkify = ["linkify-it-py (>=2.0,<3.0)"] +rtd = ["ipython", "sphinx (>=7)", "sphinx-autodoc2 (>=0.5.0,<0.6.0)", "sphinx-book-theme (>=1.1,<2.0)", "sphinx-copybutton", "sphinx-design", "sphinx-pyscript", "sphinx-tippy (>=0.4.3)", "sphinx-togglebutton", "sphinxext-opengraph (>=0.9.0,<0.10.0)", "sphinxext-rediraffe (>=0.2.7,<0.3.0)"] +testing = ["beautifulsoup4", "coverage[toml]", "defusedxml", "pytest (>=8,<9)", "pytest-cov", "pytest-param-files (>=0.6.0,<0.7.0)", "pytest-regressions", "sphinx-pytest"] +testing-docutils = ["pygments", "pytest (>=8,<9)", "pytest-param-files (>=0.6.0,<0.7.0)"] + +[[package]] +name = "nbclient" +version = "0.10.0" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"}, + {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"}, +] + +[package.dependencies] +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +nbformat = ">=5.1" +traitlets = ">=5.4" + +[package.extras] +dev = ["pre-commit"] +docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] + +[[package]] +name = "nbformat" +version = "5.10.4" +description = "The Jupyter Notebook format" +optional = false +python-versions = ">=3.8" +files = [ + {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"}, + {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"}, +] + +[package.dependencies] +fastjsonschema = ">=2.15" +jsonschema = ">=2.6" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +traitlets = ">=5.1" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["pep440", "pre-commit", "pytest", "testpath"] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "3.1" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.8" +files = [ + {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, + {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, +] + +[package.extras] +default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] +developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] +doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] +test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] + +[[package]] +name = "numpy" +version = "2.0.0" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-2.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:04494f6ec467ccb5369d1808570ae55f6ed9b5809d7f035059000a37b8d7e86f"}, + {file = "numpy-2.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2635dbd200c2d6faf2ef9a0d04f0ecc6b13b3cad54f7c67c61155138835515d2"}, + {file = "numpy-2.0.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:0a43f0974d501842866cc83471bdb0116ba0dffdbaac33ec05e6afed5b615238"}, + {file = "numpy-2.0.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:8d83bb187fb647643bd56e1ae43f273c7f4dbcdf94550d7938cfc32566756514"}, + {file = "numpy-2.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79e843d186c8fb1b102bef3e2bc35ef81160ffef3194646a7fdd6a73c6b97196"}, + {file = "numpy-2.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d7696c615765091cc5093f76fd1fa069870304beaccfd58b5dcc69e55ef49c1"}, + {file = "numpy-2.0.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b4c76e3d4c56f145d41b7b6751255feefae92edbc9a61e1758a98204200f30fc"}, + {file = "numpy-2.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:acd3a644e4807e73b4e1867b769fbf1ce8c5d80e7caaef0d90dcdc640dfc9787"}, + {file = "numpy-2.0.0-cp310-cp310-win32.whl", hash = "sha256:cee6cc0584f71adefe2c908856ccc98702baf95ff80092e4ca46061538a2ba98"}, + {file = "numpy-2.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:ed08d2703b5972ec736451b818c2eb9da80d66c3e84aed1deeb0c345fefe461b"}, + {file = "numpy-2.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ad0c86f3455fbd0de6c31a3056eb822fc939f81b1618f10ff3406971893b62a5"}, + {file = "numpy-2.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e7f387600d424f91576af20518334df3d97bc76a300a755f9a8d6e4f5cadd289"}, + {file = "numpy-2.0.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:34f003cb88b1ba38cb9a9a4a3161c1604973d7f9d5552c38bc2f04f829536609"}, + {file = "numpy-2.0.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:b6f6a8f45d0313db07d6d1d37bd0b112f887e1369758a5419c0370ba915b3871"}, + {file = "numpy-2.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f64641b42b2429f56ee08b4f427a4d2daf916ec59686061de751a55aafa22e4"}, + {file = "numpy-2.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7039a136017eaa92c1848152827e1424701532ca8e8967fe480fe1569dae581"}, + {file = "numpy-2.0.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:46e161722e0f619749d1cd892167039015b2c2817296104487cd03ed4a955995"}, + {file = "numpy-2.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0e50842b2295ba8414c8c1d9d957083d5dfe9e16828b37de883f51fc53c4016f"}, + {file = "numpy-2.0.0-cp311-cp311-win32.whl", hash = "sha256:2ce46fd0b8a0c947ae047d222f7136fc4d55538741373107574271bc00e20e8f"}, + {file = "numpy-2.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:fbd6acc766814ea6443628f4e6751d0da6593dae29c08c0b2606164db026970c"}, + {file = "numpy-2.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:354f373279768fa5a584bac997de6a6c9bc535c482592d7a813bb0c09be6c76f"}, + {file = "numpy-2.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4d2f62e55a4cd9c58c1d9a1c9edaedcd857a73cb6fda875bf79093f9d9086f85"}, + {file = "numpy-2.0.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:1e72728e7501a450288fc8e1f9ebc73d90cfd4671ebbd631f3e7857c39bd16f2"}, + {file = "numpy-2.0.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:84554fc53daa8f6abf8e8a66e076aff6ece62de68523d9f665f32d2fc50fd66e"}, + {file = "numpy-2.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c73aafd1afca80afecb22718f8700b40ac7cab927b8abab3c3e337d70e10e5a2"}, + {file = "numpy-2.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49d9f7d256fbc804391a7f72d4a617302b1afac1112fac19b6c6cec63fe7fe8a"}, + {file = "numpy-2.0.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0ec84b9ba0654f3b962802edc91424331f423dcf5d5f926676e0150789cb3d95"}, + {file = "numpy-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:feff59f27338135776f6d4e2ec7aeeac5d5f7a08a83e80869121ef8164b74af9"}, + {file = "numpy-2.0.0-cp312-cp312-win32.whl", hash = "sha256:c5a59996dc61835133b56a32ebe4ef3740ea5bc19b3983ac60cc32be5a665d54"}, + {file = "numpy-2.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:a356364941fb0593bb899a1076b92dfa2029f6f5b8ba88a14fd0984aaf76d0df"}, + {file = "numpy-2.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:e61155fae27570692ad1d327e81c6cf27d535a5d7ef97648a17d922224b216de"}, + {file = "numpy-2.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4554eb96f0fd263041baf16cf0881b3f5dafae7a59b1049acb9540c4d57bc8cb"}, + {file = "numpy-2.0.0-cp39-cp39-macosx_14_0_arm64.whl", hash = "sha256:903703372d46bce88b6920a0cd86c3ad82dae2dbef157b5fc01b70ea1cfc430f"}, + {file = "numpy-2.0.0-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:3e8e01233d57639b2e30966c63d36fcea099d17c53bf424d77f088b0f4babd86"}, + {file = "numpy-2.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cde1753efe513705a0c6d28f5884e22bdc30438bf0085c5c486cdaff40cd67a"}, + {file = "numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:821eedb7165ead9eebdb569986968b541f9908979c2da8a4967ecac4439bae3d"}, + {file = "numpy-2.0.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9a1712c015831da583b21c5bfe15e8684137097969c6d22e8316ba66b5baabe4"}, + {file = "numpy-2.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:9c27f0946a3536403efb0e1c28def1ae6730a72cd0d5878db38824855e3afc44"}, + {file = "numpy-2.0.0-cp39-cp39-win32.whl", hash = "sha256:63b92c512d9dbcc37f9d81b123dec99fdb318ba38c8059afc78086fe73820275"}, + {file = "numpy-2.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:3f6bed7f840d44c08ebdb73b1825282b801799e325bcbdfa6bc5c370e5aecc65"}, + {file = "numpy-2.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9416a5c2e92ace094e9f0082c5fd473502c91651fb896bc17690d6fc475128d6"}, + {file = "numpy-2.0.0-pp39-pypy39_pp73-macosx_14_0_x86_64.whl", hash = "sha256:17067d097ed036636fa79f6a869ac26df7db1ba22039d962422506640314933a"}, + {file = "numpy-2.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ecb5b0582cd125f67a629072fed6f83562d9dd04d7e03256c9829bdec027ad"}, + {file = "numpy-2.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cef04d068f5fb0518a77857953193b6bb94809a806bd0a14983a8f12ada060c9"}, + {file = "numpy-2.0.0.tar.gz", hash = "sha256:cf5d1c9e6837f8af9f92b6bd3e86d513cdc11f60fd62185cc49ec7d1aba34864"}, +] + +[[package]] +name = "opencv-python" +version = "4.10.0.84" +description = "Wrapper package for OpenCV python bindings." +optional = false +python-versions = ">=3.6" +files = [ + {file = "opencv-python-4.10.0.84.tar.gz", hash = "sha256:72d234e4582e9658ffea8e9cae5b63d488ad06994ef12d81dc303b17472f3526"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:fc182f8f4cda51b45f01c64e4cbedfc2f00aff799debebc305d8d0210c43f251"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-macosx_12_0_x86_64.whl", hash = "sha256:71e575744f1d23f79741450254660442785f45a0797212852ee5199ef12eed98"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09a332b50488e2dda866a6c5573ee192fe3583239fb26ff2f7f9ceb0bc119ea6"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ace140fc6d647fbe1c692bcb2abce768973491222c067c131d80957c595b71f"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-win32.whl", hash = "sha256:2db02bb7e50b703f0a2d50c50ced72e95c574e1e5a0bb35a8a86d0b35c98c236"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl", hash = "sha256:32dbbd94c26f611dc5cc6979e6b7aa1f55a64d6b463cc1dcd3c95505a63e48fe"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.21.0", markers = "python_version == \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, + {version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""}, + {version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""}, + {version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""}, + {version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""}, +] + +[[package]] +name = "packaging" +version = "24.0" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ + {file = "packaging-24.0-py3-none-any.whl", hash = "sha256:2ddfb553fdf02fb784c234c7ba6ccc288296ceabec964ad2eae3777778130bc5"}, + {file = "packaging-24.0.tar.gz", hash = "sha256:eb82c5e3e56209074766e6885bb04b8c38a0c015d0a30036ebe7ece34c9989e9"}, +] + +[[package]] +name = "pandas" +version = "2.2.2" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pandas-2.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:90c6fca2acf139569e74e8781709dccb6fe25940488755716d1d354d6bc58bce"}, + {file = "pandas-2.2.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c7adfc142dac335d8c1e0dcbd37eb8617eac386596eb9e1a1b77791cf2498238"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4abfe0be0d7221be4f12552995e58723c7422c80a659da13ca382697de830c08"}, + {file = "pandas-2.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8635c16bf3d99040fdf3ca3db669a7250ddf49c55dc4aa8fe0ae0fa8d6dcc1f0"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:40ae1dffb3967a52203105a077415a86044a2bea011b5f321c6aa64b379a3f51"}, + {file = "pandas-2.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8e5a0b00e1e56a842f922e7fae8ae4077aee4af0acb5ae3622bd4b4c30aedf99"}, + {file = "pandas-2.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:ddf818e4e6c7c6f4f7c8a12709696d193976b591cc7dc50588d3d1a6b5dc8772"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:696039430f7a562b74fa45f540aca068ea85fa34c244d0deee539cb6d70aa288"}, + {file = "pandas-2.2.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8e90497254aacacbc4ea6ae5e7a8cd75629d6ad2b30025a4a8b09aa4faf55151"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:58b84b91b0b9f4bafac2a0ac55002280c094dfc6402402332c0913a59654ab2b"}, + {file = "pandas-2.2.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d2123dc9ad6a814bcdea0f099885276b31b24f7edf40f6cdbc0912672e22eee"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:2925720037f06e89af896c70bca73459d7e6a4be96f9de79e2d440bd499fe0db"}, + {file = "pandas-2.2.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:0cace394b6ea70c01ca1595f839cf193df35d1575986e484ad35c4aeae7266c1"}, + {file = "pandas-2.2.2-cp311-cp311-win_amd64.whl", hash = "sha256:873d13d177501a28b2756375d59816c365e42ed8417b41665f346289adc68d24"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:9dfde2a0ddef507a631dc9dc4af6a9489d5e2e740e226ad426a05cabfbd7c8ef"}, + {file = "pandas-2.2.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:e9b79011ff7a0f4b1d6da6a61aa1aa604fb312d6647de5bad20013682d1429ce"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1cb51fe389360f3b5a4d57dbd2848a5f033350336ca3b340d1c53a1fad33bcad"}, + {file = "pandas-2.2.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eee3a87076c0756de40b05c5e9a6069c035ba43e8dd71c379e68cab2c20f16ad"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3e374f59e440d4ab45ca2fffde54b81ac3834cf5ae2cdfa69c90bc03bde04d76"}, + {file = "pandas-2.2.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:43498c0bdb43d55cb162cdc8c06fac328ccb5d2eabe3cadeb3529ae6f0517c32"}, + {file = "pandas-2.2.2-cp312-cp312-win_amd64.whl", hash = "sha256:d187d355ecec3629624fccb01d104da7d7f391db0311145817525281e2804d23"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0ca6377b8fca51815f382bd0b697a0814c8bda55115678cbc94c30aacbb6eff2"}, + {file = "pandas-2.2.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9057e6aa78a584bc93a13f0a9bf7e753a5e9770a30b4d758b8d5f2a62a9433cd"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:001910ad31abc7bf06f49dcc903755d2f7f3a9186c0c040b827e522e9cef0863"}, + {file = "pandas-2.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:66b479b0bd07204e37583c191535505410daa8df638fd8e75ae1b383851fe921"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a77e9d1c386196879aa5eb712e77461aaee433e54c68cf253053a73b7e49c33a"}, + {file = "pandas-2.2.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:92fd6b027924a7e178ac202cfbe25e53368db90d56872d20ffae94b96c7acc57"}, + {file = "pandas-2.2.2-cp39-cp39-win_amd64.whl", hash = "sha256:640cef9aa381b60e296db324337a554aeeb883ead99dc8f6c18e81a93942f5f4"}, + {file = "pandas-2.2.2.tar.gz", hash = "sha256:9e79019aba43cb4fda9e4d983f8e88ca0373adbb697ae9c6c43093218de28b54"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.22.4", markers = "python_version < \"3.11\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, + {version = ">=1.23.2", markers = "python_version == \"3.11\""}, +] +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.7" + +[package.extras] +all = ["PyQt5 (>=5.15.9)", "SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)", "beautifulsoup4 (>=4.11.2)", "bottleneck (>=1.3.6)", "dataframe-api-compat (>=0.1.7)", "fastparquet (>=2022.12.0)", "fsspec (>=2022.11.0)", "gcsfs (>=2022.11.0)", "html5lib (>=1.1)", "hypothesis (>=6.46.1)", "jinja2 (>=3.1.2)", "lxml (>=4.9.2)", "matplotlib (>=3.6.3)", "numba (>=0.56.4)", "numexpr (>=2.8.4)", "odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "pandas-gbq (>=0.19.0)", "psycopg2 (>=2.9.6)", "pyarrow (>=10.0.1)", "pymysql (>=1.0.2)", "pyreadstat (>=1.2.0)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "qtpy (>=2.3.0)", "s3fs (>=2022.11.0)", "scipy (>=1.10.0)", "tables (>=3.8.0)", "tabulate (>=0.9.0)", "xarray (>=2022.12.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)", "zstandard (>=0.19.0)"] +aws = ["s3fs (>=2022.11.0)"] +clipboard = ["PyQt5 (>=5.15.9)", "qtpy (>=2.3.0)"] +compression = ["zstandard (>=0.19.0)"] +computation = ["scipy (>=1.10.0)", "xarray (>=2022.12.0)"] +consortium-standard = ["dataframe-api-compat (>=0.1.7)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.1.0)", "python-calamine (>=0.1.7)", "pyxlsb (>=1.0.10)", "xlrd (>=2.0.1)", "xlsxwriter (>=3.0.5)"] +feather = ["pyarrow (>=10.0.1)"] +fss = ["fsspec (>=2022.11.0)"] +gcp = ["gcsfs (>=2022.11.0)", "pandas-gbq (>=0.19.0)"] +hdf5 = ["tables (>=3.8.0)"] +html = ["beautifulsoup4 (>=4.11.2)", "html5lib (>=1.1)", "lxml (>=4.9.2)"] +mysql = ["SQLAlchemy (>=2.0.0)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.1.2)", "tabulate (>=0.9.0)"] +parquet = ["pyarrow (>=10.0.1)"] +performance = ["bottleneck (>=1.3.6)", "numba (>=0.56.4)", "numexpr (>=2.8.4)"] +plot = ["matplotlib (>=3.6.3)"] +postgresql = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "psycopg2 (>=2.9.6)"] +pyarrow = ["pyarrow (>=10.0.1)"] +spss = ["pyreadstat (>=1.2.0)"] +sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-driver-sqlite (>=0.8.0)"] +test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.9.2)"] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "pillow" +version = "10.3.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"}, + {file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"}, + {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"}, + {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"}, + {file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"}, + {file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"}, + {file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"}, + {file = "pillow-10.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:5f77cf66e96ae734717d341c145c5949c63180842a545c47a0ce7ae52ca83795"}, + {file = "pillow-10.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4b878386c4bf293578b48fc570b84ecfe477d3b77ba39a6e87150af77f40c57"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdcbb4068117dfd9ce0138d068ac512843c52295ed996ae6dd1faf537b6dbc27"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9797a6c8fe16f25749b371c02e2ade0efb51155e767a971c61734b1bf6293994"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:9e91179a242bbc99be65e139e30690e081fe6cb91a8e77faf4c409653de39451"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b87bd9d81d179bd8ab871603bd80d8645729939f90b71e62914e816a76fc6bd"}, + {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:81d09caa7b27ef4e61cb7d8fbf1714f5aec1c6b6c5270ee53504981e6e9121ad"}, + {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:048ad577748b9fa4a99a0548c64f2cb8d672d5bf2e643a739ac8faff1164238c"}, + {file = "pillow-10.3.0-cp311-cp311-win32.whl", hash = "sha256:7161ec49ef0800947dc5570f86568a7bb36fa97dd09e9827dc02b718c5643f09"}, + {file = "pillow-10.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:8eb0908e954d093b02a543dc963984d6e99ad2b5e36503d8a0aaf040505f747d"}, + {file = "pillow-10.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:4e6f7d1c414191c1199f8996d3f2282b9ebea0945693fb67392c75a3a320941f"}, + {file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"}, + {file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"}, + {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"}, + {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"}, + {file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"}, + {file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"}, + {file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"}, + {file = "pillow-10.3.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:4eaa22f0d22b1a7e93ff0a596d57fdede2e550aecffb5a1ef1106aaece48e96b"}, + {file = "pillow-10.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cd5e14fbf22a87321b24c88669aad3a51ec052eb145315b3da3b7e3cc105b9a2"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1530e8f3a4b965eb6a7785cf17a426c779333eb62c9a7d1bbcf3ffd5bf77a4aa"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d512aafa1d32efa014fa041d38868fda85028e3f930a96f85d49c7d8ddc0383"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:339894035d0ede518b16073bdc2feef4c991ee991a29774b33e515f1d308e08d"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:aa7e402ce11f0885305bfb6afb3434b3cd8f53b563ac065452d9d5654c7b86fd"}, + {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0ea2a783a2bdf2a561808fe4a7a12e9aa3799b701ba305de596bc48b8bdfce9d"}, + {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c78e1b00a87ce43bb37642c0812315b411e856a905d58d597750eb79802aaaa3"}, + {file = "pillow-10.3.0-cp38-cp38-win32.whl", hash = "sha256:72d622d262e463dfb7595202d229f5f3ab4b852289a1cd09650362db23b9eb0b"}, + {file = "pillow-10.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:2034f6759a722da3a3dbd91a81148cf884e91d1b747992ca288ab88c1de15999"}, + {file = "pillow-10.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2ed854e716a89b1afcedea551cd85f2eb2a807613752ab997b9974aaa0d56936"}, + {file = "pillow-10.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc1a390a82755a8c26c9964d457d4c9cbec5405896cba94cf51f36ea0d855002"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4203efca580f0dd6f882ca211f923168548f7ba334c189e9eab1178ab840bf60"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3102045a10945173d38336f6e71a8dc71bcaeed55c3123ad4af82c52807b9375"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:6fb1b30043271ec92dc65f6d9f0b7a830c210b8a96423074b15c7bc999975f57"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1dfc94946bc60ea375cc39cff0b8da6c7e5f8fcdc1d946beb8da5c216156ddd8"}, + {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b09b86b27a064c9624d0a6c54da01c1beaf5b6cadfa609cf63789b1d08a797b9"}, + {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d3b2348a78bc939b4fed6552abfd2e7988e0f81443ef3911a4b8498ca084f6eb"}, + {file = "pillow-10.3.0-cp39-cp39-win32.whl", hash = "sha256:45ebc7b45406febf07fef35d856f0293a92e7417ae7933207e90bf9090b70572"}, + {file = "pillow-10.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:0ba26351b137ca4e0db0342d5d00d2e355eb29372c05afd544ebf47c0956ffeb"}, + {file = "pillow-10.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:50fd3f6b26e3441ae07b7c979309638b72abc1a25da31a81a7fbd9495713ef4f"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"}, + {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "platformdirs" +version = "4.2.2" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] + +[[package]] +name = "plotly" +version = "5.22.0" +description = "An open-source, interactive data visualization library for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "plotly-5.22.0-py3-none-any.whl", hash = "sha256:68fc1901f098daeb233cc3dd44ec9dc31fb3ca4f4e53189344199c43496ed006"}, + {file = "plotly-5.22.0.tar.gz", hash = "sha256:859fdadbd86b5770ae2466e542b761b247d1c6b49daed765b95bb8c7063e7469"}, +] + +[package.dependencies] +packaging = "*" +tenacity = ">=6.2.0" + +[[package]] +name = "pluggy" +version = "1.5.0" +description = "plugin and hook calling mechanisms for python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"}, + {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"}, +] + +[package.extras] +dev = ["pre-commit", "tox"] +testing = ["pytest", "pytest-benchmark"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.47" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, + {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "6.0.0" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "psutil-6.0.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a021da3e881cd935e64a3d0a20983bda0bb4cf80e4f74fa9bfcb1bc5785360c6"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:1287c2b95f1c0a364d23bc6f2ea2365a8d4d9b726a3be7294296ff7ba97c17f0"}, + {file = "psutil-6.0.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:a9a3dbfb4de4f18174528d87cc352d1f788b7496991cca33c6996f40c9e3c92c"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:6ec7588fb3ddaec7344a825afe298db83fe01bfaaab39155fa84cf1c0d6b13c3"}, + {file = "psutil-6.0.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:1e7c870afcb7d91fdea2b37c24aeb08f98b6d67257a5cb0a8bc3ac68d0f1a68c"}, + {file = "psutil-6.0.0-cp27-none-win32.whl", hash = "sha256:02b69001f44cc73c1c5279d02b30a817e339ceb258ad75997325e0e6169d8b35"}, + {file = "psutil-6.0.0-cp27-none-win_amd64.whl", hash = "sha256:21f1fb635deccd510f69f485b87433460a603919b45e2a324ad65b0cc74f8fb1"}, + {file = "psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd"}, + {file = "psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132"}, + {file = "psutil-6.0.0-cp36-cp36m-win32.whl", hash = "sha256:fc8c9510cde0146432bbdb433322861ee8c3efbf8589865c8bf8d21cb30c4d14"}, + {file = "psutil-6.0.0-cp36-cp36m-win_amd64.whl", hash = "sha256:34859b8d8f423b86e4385ff3665d3f4d94be3cdf48221fbe476e883514fdb71c"}, + {file = "psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d"}, + {file = "psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3"}, + {file = "psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0"}, + {file = "psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pyarrow" +version = "16.1.0" +description = "Python library for Apache Arrow" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyarrow-16.1.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:17e23b9a65a70cc733d8b738baa6ad3722298fa0c81d88f63ff94bf25eaa77b9"}, + {file = "pyarrow-16.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:4740cc41e2ba5d641071d0ab5e9ef9b5e6e8c7611351a5cb7c1d175eaf43674a"}, + {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:98100e0268d04e0eec47b73f20b39c45b4006f3c4233719c3848aa27a03c1aef"}, + {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f68f409e7b283c085f2da014f9ef81e885d90dcd733bd648cfba3ef265961848"}, + {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:a8914cd176f448e09746037b0c6b3a9d7688cef451ec5735094055116857580c"}, + {file = "pyarrow-16.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:48be160782c0556156d91adbdd5a4a7e719f8d407cb46ae3bb4eaee09b3111bd"}, + {file = "pyarrow-16.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:9cf389d444b0f41d9fe1444b70650fea31e9d52cfcb5f818b7888b91b586efff"}, + {file = "pyarrow-16.1.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:d0ebea336b535b37eee9eee31761813086d33ed06de9ab6fc6aaa0bace7b250c"}, + {file = "pyarrow-16.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2e73cfc4a99e796727919c5541c65bb88b973377501e39b9842ea71401ca6c1c"}, + {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf9251264247ecfe93e5f5a0cd43b8ae834f1e61d1abca22da55b20c788417f6"}, + {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddf5aace92d520d3d2a20031d8b0ec27b4395cab9f74e07cc95edf42a5cc0147"}, + {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:25233642583bf658f629eb230b9bb79d9af4d9f9229890b3c878699c82f7d11e"}, + {file = "pyarrow-16.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a33a64576fddfbec0a44112eaf844c20853647ca833e9a647bfae0582b2ff94b"}, + {file = "pyarrow-16.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:185d121b50836379fe012753cf15c4ba9638bda9645183ab36246923875f8d1b"}, + {file = "pyarrow-16.1.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:2e51ca1d6ed7f2e9d5c3c83decf27b0d17bb207a7dea986e8dc3e24f80ff7d6f"}, + {file = "pyarrow-16.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:06ebccb6f8cb7357de85f60d5da50e83507954af617d7b05f48af1621d331c9a"}, + {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b04707f1979815f5e49824ce52d1dceb46e2f12909a48a6a753fe7cafbc44a0c"}, + {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d32000693deff8dc5df444b032b5985a48592c0697cb6e3071a5d59888714e2"}, + {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:8785bb10d5d6fd5e15d718ee1d1f914fe768bf8b4d1e5e9bf253de8a26cb1628"}, + {file = "pyarrow-16.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:e1369af39587b794873b8a307cc6623a3b1194e69399af0efd05bb202195a5a7"}, + {file = "pyarrow-16.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:febde33305f1498f6df85e8020bca496d0e9ebf2093bab9e0f65e2b4ae2b3444"}, + {file = "pyarrow-16.1.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:b5f5705ab977947a43ac83b52ade3b881eb6e95fcc02d76f501d549a210ba77f"}, + {file = "pyarrow-16.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0d27bf89dfc2576f6206e9cd6cf7a107c9c06dc13d53bbc25b0bd4556f19cf5f"}, + {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d07de3ee730647a600037bc1d7b7994067ed64d0eba797ac74b2bc77384f4c2"}, + {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fbef391b63f708e103df99fbaa3acf9f671d77a183a07546ba2f2c297b361e83"}, + {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:19741c4dbbbc986d38856ee7ddfdd6a00fc3b0fc2d928795b95410d38bb97d15"}, + {file = "pyarrow-16.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:f2c5fb249caa17b94e2b9278b36a05ce03d3180e6da0c4c3b3ce5b2788f30eed"}, + {file = "pyarrow-16.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:e6b6d3cd35fbb93b70ade1336022cc1147b95ec6af7d36906ca7fe432eb09710"}, + {file = "pyarrow-16.1.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:18da9b76a36a954665ccca8aa6bd9f46c1145f79c0bb8f4f244f5f8e799bca55"}, + {file = "pyarrow-16.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:99f7549779b6e434467d2aa43ab2b7224dd9e41bdde486020bae198978c9e05e"}, + {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f07fdffe4fd5b15f5ec15c8b64584868d063bc22b86b46c9695624ca3505b7b4"}, + {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ddfe389a08ea374972bd4065d5f25d14e36b43ebc22fc75f7b951f24378bf0b5"}, + {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:3b20bd67c94b3a2ea0a749d2a5712fc845a69cb5d52e78e6449bbd295611f3aa"}, + {file = "pyarrow-16.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:ba8ac20693c0bb0bf4b238751d4409e62852004a8cf031c73b0e0962b03e45e3"}, + {file = "pyarrow-16.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:31a1851751433d89a986616015841977e0a188662fcffd1a5677453f1df2de0a"}, + {file = "pyarrow-16.1.0.tar.gz", hash = "sha256:15fbb22ea96d11f0b5768504a3f961edab25eaf4197c341720c4a387f6c60315"}, +] + +[package.dependencies] +numpy = ">=1.16.6" + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pydata-sphinx-theme" +version = "0.16.0" +description = "Bootstrap-based Sphinx theme from the PyData community" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pydata_sphinx_theme-0.16.0-py3-none-any.whl", hash = "sha256:18c810ee4e67e05281e371e156c1fb5bb0fa1f2747240461b225272f7d8d57d8"}, + {file = "pydata_sphinx_theme-0.16.0.tar.gz", hash = "sha256:721dd26e05fa8b992d66ef545536e6cbe0110afb9865820a08894af1ad6f7707"}, +] + +[package.dependencies] +accessible-pygments = "*" +Babel = "*" +beautifulsoup4 = "*" +docutils = "!=0.17.0" +pygments = ">=2.7" +sphinx = ">=6.1" +typing-extensions = "*" + +[package.extras] +a11y = ["pytest-playwright"] +dev = ["pandoc", "pre-commit", "pydata-sphinx-theme[doc,test]", "pyyaml", "sphinx-theme-builder[cli]", "tox"] +doc = ["ablog (>=0.11.8)", "colorama", "graphviz", "ipykernel", "ipyleaflet", "ipywidgets", "jupyter_sphinx", "jupyterlite-sphinx", "linkify-it-py", "matplotlib", "myst-parser", "nbsphinx", "numpy", "numpydoc", "pandas", "plotly", "rich", "sphinx-autoapi (>=3.0.0)", "sphinx-copybutton", "sphinx-design", "sphinx-favicon (>=1.0.1)", "sphinx-sitemap", "sphinx-togglebutton", "sphinxcontrib-youtube (>=1.4.1)", "sphinxext-rediraffe", "xarray"] +i18n = ["Babel", "jinja2"] +test = ["pytest", "pytest-cov", "pytest-regressions", "sphinx[test]"] + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pytest" +version = "8.2.1" +description = "pytest: simple powerful testing with Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pytest-8.2.1-py3-none-any.whl", hash = "sha256:faccc5d332b8c3719f40283d0d44aa5cf101cec36f88cde9ed8f2bc0538612b1"}, + {file = "pytest-8.2.1.tar.gz", hash = "sha256:5046e5b46d8e4cac199c373041f26be56fdb81eb4e67dc11d4e10811fc3408fd"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} +iniconfig = "*" +packaging = "*" +pluggy = ">=1.5,<2.0" +tomli = {version = ">=1", markers = "python_version < \"3.11\""} + +[package.extras] +dev = ["argcomplete", "attrs (>=19.2)", "hypothesis (>=3.56)", "mock", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2024.1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, + {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, +] + +[[package]] +name = "pywavelets" +version = "1.6.0" +description = "PyWavelets, wavelet transform module" +optional = false +python-versions = ">=3.9" +files = [ + {file = "pywavelets-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ddc1ff5ad706313d930f857f9656f565dfb81b85bbe58a9db16ad8fa7d1537c5"}, + {file = "pywavelets-1.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:78feab4e0c25fa32034b6b64cb854c6ce15663b4f0ffb25d8f0ee58915300f9b"}, + {file = "pywavelets-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be36f08efe9bc3abf40cf40cd2ee0aa0db26e4894e13ce5ac178442864161e8c"}, + {file = "pywavelets-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0595c51472c9c5724fe087cb73e2797053fd25c788d6553fdad6ff61abc60e91"}, + {file = "pywavelets-1.6.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:058a750477dde633ac53b8806f835af3559d52db6532fb2b93c1f4b5441365b8"}, + {file = "pywavelets-1.6.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:538795d9c4181152b414285b5a7f72ac52581ecdcdce74b6cca3fa0b8a5ab0aa"}, + {file = "pywavelets-1.6.0-cp310-cp310-win32.whl", hash = "sha256:47de024ba4f9df97e98b5f540340e1a9edd82d2c477450bef8c9b5381487128e"}, + {file = "pywavelets-1.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:e2c44760c0906ddf2176920a2613287f6eea947f166ce7eee9546081b06a6835"}, + {file = "pywavelets-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d91aaaf6de53b758bcdc96c81cdb5a8607758602be49f691188c0e108cf1e738"}, + {file = "pywavelets-1.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3b5302edb6d1d1ff6636d37c9ff29c4892f2a3648d736cc1df01f3f36e25c8cf"}, + {file = "pywavelets-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5e655446e37a3c87213d5c6386b86f65c4d61736b4432d720171e7dd6523d6a"}, + {file = "pywavelets-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ec7d69b746a0eaa327b829a3252a63619f2345e263177be5dd9bf30d7933c8d"}, + {file = "pywavelets-1.6.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:97ea9613bd6b7108ebb44b709060adc7e2d5fac73be7152342bdd5513d75f84e"}, + {file = "pywavelets-1.6.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:48b3813c6d1a7a8194f37dbb5dbbdf2fe1112152c91445ea2e54f64ff6350c36"}, + {file = "pywavelets-1.6.0-cp311-cp311-win32.whl", hash = "sha256:4ffb484d096a5eb10af7121e0203546a03e1369328df321a33ef91f67bac40cf"}, + {file = "pywavelets-1.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:274bc47b289585383aa65519b3fcae5b4dee5e31db3d4198d4fad701a70e59f7"}, + {file = "pywavelets-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d6ec113386a432e04103f95e351d2657b42145bd1e1ed26513423391bcb5f011"}, + {file = "pywavelets-1.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ab652112d3932d21f020e281e06926a751354c2b5629fb716f5eb9d0104b84e5"}, + {file = "pywavelets-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:47b0314a22616c5f3f08760f0e00b4a15b7c7dadca5e39bb701cf7869a4207c5"}, + {file = "pywavelets-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:138471513bc0a4cd2ddc4e50c7ec04e3468c268e101a0d02f698f6aedd1d5e79"}, + {file = "pywavelets-1.6.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:67936491ae3e5f957c428e34fdaed21f131535b8d60c7c729a1b539ce8864837"}, + {file = "pywavelets-1.6.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:dd798cee3d28fb3d32a26a00d9831a20bf316c36d685e4ced01b4e4a8f36f5ce"}, + {file = "pywavelets-1.6.0-cp312-cp312-win32.whl", hash = "sha256:e772f7f0c16bfc3be8ac3cd10d29a9920bb7a39781358856223c491b899e6e79"}, + {file = "pywavelets-1.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:4ef15a63a72afa67ae9f4f3b06c95c5382730fb3075e668d49a880e65f2f089c"}, + {file = "pywavelets-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:627df378e63e9c789b6f2e7060cb4264ebae6f6b0efc1da287a2c060de454a1f"}, + {file = "pywavelets-1.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a413b51dc19e05243fe0b0864a8e8a16b5ca9bf2e4713da00a95b1b5747a5367"}, + {file = "pywavelets-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:be615c6c1873e189c265d4a76d1751ec49b17e29725e6dd2e9c74f1868f590b7"}, + {file = "pywavelets-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4021ef69ec9f3862f66580fc4417be728bd78722914394594b48212fd1fcaf21"}, + {file = "pywavelets-1.6.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:8fbf7b61b28b5457693c034e58a01622756d1fd60a80ae13ac5888b1d3e57e80"}, + {file = "pywavelets-1.6.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f58ddbb0a6cd243928876edfc463b990763a24fb94498607d6fea690e32cca4c"}, + {file = "pywavelets-1.6.0-cp39-cp39-win32.whl", hash = "sha256:42a22e68e345b6de7d387ef752111ab4530c98048d2b4bdac8ceefb078b4ead6"}, + {file = "pywavelets-1.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:32198de321892743c1a3d1957fe1cd8a8ecc078bfbba6b8f3982518e897271d7"}, + {file = "pywavelets-1.6.0.tar.gz", hash = "sha256:ea027c70977122c5fc27b2510f0a0d9528f9c3df6ea3e4c577ca55fd00325a5b"}, +] + +[package.dependencies] +numpy = ">=1.22.4,<3" + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.1" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.6" +files = [ + {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, + {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, + {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, + {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, + {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, + {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, + {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, + {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, + {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, + {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, + {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, + {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, + {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, + {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, + {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, + {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, + {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, + {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, + {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, + {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, + {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, + {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, + {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, + {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, +] + +[[package]] +name = "pyzmq" +version = "26.0.3" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, + {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, + {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, + {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, + {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, + {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, + {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, + {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "referencing" +version = "0.35.1" +description = "JSON Referencing + Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +rpds-py = ">=0.7.0" + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "rpds-py" +version = "0.18.1" +description = "Python bindings to Rust's persistent data structures (rpds)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "rpds_py-0.18.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d31dea506d718693b6b2cffc0648a8929bdc51c70a311b2770f09611caa10d53"}, + {file = "rpds_py-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:732672fbc449bab754e0b15356c077cc31566df874964d4801ab14f71951ea80"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a98a1f0552b5f227a3d6422dbd61bc6f30db170939bd87ed14f3c339aa6c7c9"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f1944ce16401aad1e3f7d312247b3d5de7981f634dc9dfe90da72b87d37887d"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38e14fb4e370885c4ecd734f093a2225ee52dc384b86fa55fe3f74638b2cfb09"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08d74b184f9ab6289b87b19fe6a6d1a97fbfea84b8a3e745e87a5de3029bf944"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d70129cef4a8d979caa37e7fe957202e7eee8ea02c5e16455bc9808a59c6b2f0"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ce0bb20e3a11bd04461324a6a798af34d503f8d6f1aa3d2aa8901ceaf039176d"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:81c5196a790032e0fc2464c0b4ab95f8610f96f1f2fa3d4deacce6a79852da60"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f3027be483868c99b4985fda802a57a67fdf30c5d9a50338d9db646d590198da"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d44607f98caa2961bab4fa3c4309724b185b464cdc3ba6f3d7340bac3ec97cc1"}, + {file = "rpds_py-0.18.1-cp310-none-win32.whl", hash = "sha256:c273e795e7a0f1fddd46e1e3cb8be15634c29ae8ff31c196debb620e1edb9333"}, + {file = "rpds_py-0.18.1-cp310-none-win_amd64.whl", hash = "sha256:8352f48d511de5f973e4f2f9412736d7dea76c69faa6d36bcf885b50c758ab9a"}, + {file = "rpds_py-0.18.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6b5ff7e1d63a8281654b5e2896d7f08799378e594f09cf3674e832ecaf396ce8"}, + {file = "rpds_py-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8927638a4d4137a289e41d0fd631551e89fa346d6dbcfc31ad627557d03ceb6d"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:154bf5c93d79558b44e5b50cc354aa0459e518e83677791e6adb0b039b7aa6a7"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07f2139741e5deb2c5154a7b9629bc5aa48c766b643c1a6750d16f865a82c5fc"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c7672e9fba7425f79019db9945b16e308ed8bc89348c23d955c8c0540da0a07"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:489bdfe1abd0406eba6b3bb4fdc87c7fa40f1031de073d0cfb744634cc8fa261"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c20f05e8e3d4fc76875fc9cb8cf24b90a63f5a1b4c5b9273f0e8225e169b100"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:967342e045564cef76dfcf1edb700b1e20838d83b1aa02ab313e6a497cf923b8"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2cc7c1a47f3a63282ab0f422d90ddac4aa3034e39fc66a559ab93041e6505da7"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f7afbfee1157e0f9376c00bb232e80a60e59ed716e3211a80cb8506550671e6e"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9e6934d70dc50f9f8ea47081ceafdec09245fd9f6032669c3b45705dea096b88"}, + {file = "rpds_py-0.18.1-cp311-none-win32.whl", hash = "sha256:c69882964516dc143083d3795cb508e806b09fc3800fd0d4cddc1df6c36e76bb"}, + {file = "rpds_py-0.18.1-cp311-none-win_amd64.whl", hash = "sha256:70a838f7754483bcdc830444952fd89645569e7452e3226de4a613a4c1793fb2"}, + {file = "rpds_py-0.18.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3dd3cd86e1db5aadd334e011eba4e29d37a104b403e8ca24dcd6703c68ca55b3"}, + {file = "rpds_py-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:05f3d615099bd9b13ecf2fc9cf2d839ad3f20239c678f461c753e93755d629ee"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35b2b771b13eee8729a5049c976197ff58a27a3829c018a04341bcf1ae409b2b"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ee17cd26b97d537af8f33635ef38be873073d516fd425e80559f4585a7b90c43"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b646bf655b135ccf4522ed43d6902af37d3f5dbcf0da66c769a2b3938b9d8184"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19ba472b9606c36716062c023afa2484d1e4220548751bda14f725a7de17b4f6"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e30ac5e329098903262dc5bdd7e2086e0256aa762cc8b744f9e7bf2a427d3f8"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d58ad6317d188c43750cb76e9deacf6051d0f884d87dc6518e0280438648a9ac"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e1735502458621921cee039c47318cb90b51d532c2766593be6207eec53e5c4c"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f5bab211605d91db0e2995a17b5c6ee5edec1270e46223e513eaa20da20076ac"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2fc24a329a717f9e2448f8cd1f960f9dac4e45b6224d60734edeb67499bab03a"}, + {file = "rpds_py-0.18.1-cp312-none-win32.whl", hash = "sha256:1805d5901779662d599d0e2e4159d8a82c0b05faa86ef9222bf974572286b2b6"}, + {file = "rpds_py-0.18.1-cp312-none-win_amd64.whl", hash = "sha256:720edcb916df872d80f80a1cc5ea9058300b97721efda8651efcd938a9c70a72"}, + {file = "rpds_py-0.18.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:c827576e2fa017a081346dce87d532a5310241648eb3700af9a571a6e9fc7e74"}, + {file = "rpds_py-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:aa3679e751408d75a0b4d8d26d6647b6d9326f5e35c00a7ccd82b78ef64f65f8"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0abeee75434e2ee2d142d650d1e54ac1f8b01e6e6abdde8ffd6eeac6e9c38e20"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed402d6153c5d519a0faf1bb69898e97fb31613b49da27a84a13935ea9164dfc"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:338dee44b0cef8b70fd2ef54b4e09bb1b97fc6c3a58fea5db6cc083fd9fc2724"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7750569d9526199c5b97e5a9f8d96a13300950d910cf04a861d96f4273d5b104"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:607345bd5912aacc0c5a63d45a1f73fef29e697884f7e861094e443187c02be5"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:207c82978115baa1fd8d706d720b4a4d2b0913df1c78c85ba73fe6c5804505f0"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6d1e42d2735d437e7e80bab4d78eb2e459af48c0a46e686ea35f690b93db792d"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5463c47c08630007dc0fe99fb480ea4f34a89712410592380425a9b4e1611d8e"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:06d218939e1bf2ca50e6b0ec700ffe755e5216a8230ab3e87c059ebb4ea06afc"}, + {file = "rpds_py-0.18.1-cp38-none-win32.whl", hash = "sha256:312fe69b4fe1ffbe76520a7676b1e5ac06ddf7826d764cc10265c3b53f96dbe9"}, + {file = "rpds_py-0.18.1-cp38-none-win_amd64.whl", hash = "sha256:9437ca26784120a279f3137ee080b0e717012c42921eb07861b412340f85bae2"}, + {file = "rpds_py-0.18.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:19e515b78c3fc1039dd7da0a33c28c3154458f947f4dc198d3c72db2b6b5dc93"}, + {file = "rpds_py-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7b28c5b066bca9a4eb4e2f2663012debe680f097979d880657f00e1c30875a0"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:673fdbbf668dd958eff750e500495ef3f611e2ecc209464f661bc82e9838991e"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d960de62227635d2e61068f42a6cb6aae91a7fe00fca0e3aeed17667c8a34611"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:352a88dc7892f1da66b6027af06a2e7e5d53fe05924cc2cfc56495b586a10b72"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4e0ee01ad8260184db21468a6e1c37afa0529acc12c3a697ee498d3c2c4dcaf3"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4c39ad2f512b4041343ea3c7894339e4ca7839ac38ca83d68a832fc8b3748ab"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aaa71ee43a703c321906813bb252f69524f02aa05bf4eec85f0c41d5d62d0f4c"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6cd8098517c64a85e790657e7b1e509b9fe07487fd358e19431cb120f7d96338"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4adec039b8e2928983f885c53b7cc4cda8965b62b6596501a0308d2703f8af1b"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:32b7daaa3e9389db3695964ce8e566e3413b0c43e3394c05e4b243a4cd7bef26"}, + {file = "rpds_py-0.18.1-cp39-none-win32.whl", hash = "sha256:2625f03b105328729f9450c8badda34d5243231eef6535f80064d57035738360"}, + {file = "rpds_py-0.18.1-cp39-none-win_amd64.whl", hash = "sha256:bf18932d0003c8c4d51a39f244231986ab23ee057d235a12b2684ea26a353590"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e"}, + {file = "rpds_py-0.18.1.tar.gz", hash = "sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f"}, +] + +[[package]] +name = "scikit-image" +version = "0.24.0" +description = "Image processing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scikit_image-0.24.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cb3bc0264b6ab30b43c4179ee6156bc18b4861e78bb329dd8d16537b7bbf827a"}, + {file = "scikit_image-0.24.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:9c7a52e20cdd760738da38564ba1fed7942b623c0317489af1a598a8dedf088b"}, + {file = "scikit_image-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:93f46e6ce42e5409f4d09ce1b0c7f80dd7e4373bcec635b6348b63e3c886eac8"}, + {file = "scikit_image-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39ee0af13435c57351a3397eb379e72164ff85161923eec0c38849fecf1b4764"}, + {file = "scikit_image-0.24.0-cp310-cp310-win_amd64.whl", hash = "sha256:7ac7913b028b8aa780ffae85922894a69e33d1c0bf270ea1774f382fe8bf95e7"}, + {file = "scikit_image-0.24.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:272909e02a59cea3ed4aa03739bb88df2625daa809f633f40b5053cf09241831"}, + {file = "scikit_image-0.24.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:190ebde80b4470fe8838764b9b15f232a964f1a20391663e31008d76f0c696f7"}, + {file = "scikit_image-0.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59c98cc695005faf2b79904e4663796c977af22586ddf1b12d6af2fa22842dc2"}, + {file = "scikit_image-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa27b3a0dbad807b966b8db2d78da734cb812ca4787f7fbb143764800ce2fa9c"}, + {file = "scikit_image-0.24.0-cp311-cp311-win_amd64.whl", hash = "sha256:dacf591ac0c272a111181afad4b788a27fe70d213cfddd631d151cbc34f8ca2c"}, + {file = "scikit_image-0.24.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6fccceb54c9574590abcddc8caf6cefa57c13b5b8b4260ab3ff88ad8f3c252b3"}, + {file = "scikit_image-0.24.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:ccc01e4760d655aab7601c1ba7aa4ddd8b46f494ac46ec9c268df6f33ccddf4c"}, + {file = "scikit_image-0.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18836a18d3a7b6aca5376a2d805f0045826bc6c9fc85331659c33b4813e0b563"}, + {file = "scikit_image-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8579bda9c3f78cb3b3ed8b9425213c53a25fa7e994b7ac01f2440b395babf660"}, + {file = "scikit_image-0.24.0-cp312-cp312-win_amd64.whl", hash = "sha256:82ab903afa60b2da1da2e6f0c8c65e7c8868c60a869464c41971da929b3e82bc"}, + {file = "scikit_image-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ef04360eda372ee5cd60aebe9be91258639c86ae2ea24093fb9182118008d009"}, + {file = "scikit_image-0.24.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:e9aadb442360a7e76f0c5c9d105f79a83d6df0e01e431bd1d5757e2c5871a1f3"}, + {file = "scikit_image-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5e37de6f4c1abcf794e13c258dc9b7d385d5be868441de11c180363824192ff7"}, + {file = "scikit_image-0.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4688c18bd7ec33c08d7bf0fd19549be246d90d5f2c1d795a89986629af0a1e83"}, + {file = "scikit_image-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:56dab751d20b25d5d3985e95c9b4e975f55573554bd76b0aedf5875217c93e69"}, + {file = "scikit_image-0.24.0.tar.gz", hash = "sha256:5d16efe95da8edbeb363e0c4157b99becbd650a60b77f6e3af5768b66cf007ab"}, +] + +[package.dependencies] +imageio = ">=2.33" +lazy-loader = ">=0.4" +networkx = ">=2.8" +numpy = ">=1.23" +packaging = ">=21" +pillow = ">=9.1" +scipy = ">=1.9" +tifffile = ">=2022.8.12" + +[package.extras] +build = ["Cython (>=3.0.4)", "build", "meson-python (>=0.15)", "ninja", "numpy (>=2.0.0rc1)", "packaging (>=21)", "pythran", "setuptools (>=67)", "spin (==0.8)", "wheel"] +data = ["pooch (>=1.6.0)"] +developer = ["ipython", "pre-commit", "tomli"] +docs = ["PyWavelets (>=1.1.1)", "dask[array] (>=2022.9.2)", "ipykernel", "ipywidgets", "kaleido", "matplotlib (>=3.6)", "myst-parser", "numpydoc (>=1.7)", "pandas (>=1.5)", "plotly (>=5.10)", "pooch (>=1.6)", "pydata-sphinx-theme (>=0.15.2)", "pytest-doctestplus", "pytest-runner", "scikit-learn (>=1.1)", "seaborn (>=0.11)", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-gallery (>=0.14)", "sphinx_design (>=0.5)", "tifffile (>=2022.8.12)"] +optional = ["PyWavelets (>=1.1.1)", "SimpleITK", "astropy (>=5.0)", "cloudpickle (>=0.2.1)", "dask[array] (>=2021.1.0)", "matplotlib (>=3.6)", "pooch (>=1.6.0)", "pyamg", "scikit-learn (>=1.1)"] +test = ["asv", "numpydoc (>=1.7)", "pooch (>=1.6.0)", "pytest (>=7.0)", "pytest-cov (>=2.11.0)", "pytest-doctestplus", "pytest-faulthandler", "pytest-localserver"] + +[[package]] +name = "scipy" +version = "1.13.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:20335853b85e9a49ff7572ab453794298bcf0354d8068c5f6775a0eabf350aca"}, + {file = "scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d605e9c23906d1994f55ace80e0125c587f96c020037ea6aa98d01b4bd2e222f"}, + {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfa31f1def5c819b19ecc3a8b52d28ffdcc7ed52bb20c9a7589669dd3c250989"}, + {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26264b282b9da0952a024ae34710c2aff7d27480ee91a2e82b7b7073c24722f"}, + {file = "scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eccfa1906eacc02de42d70ef4aecea45415f5be17e72b61bafcfd329bdc52e94"}, + {file = "scipy-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:2831f0dc9c5ea9edd6e51e6e769b655f08ec6db6e2e10f86ef39bd32eb11da54"}, + {file = "scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:27e52b09c0d3a1d5b63e1105f24177e544a222b43611aaf5bc44d4a0979e32f9"}, + {file = "scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:54f430b00f0133e2224c3ba42b805bfd0086fe488835effa33fa291561932326"}, + {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e89369d27f9e7b0884ae559a3a956e77c02114cc60a6058b4e5011572eea9299"}, + {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a78b4b3345f1b6f68a763c6e25c0c9a23a9fd0f39f5f3d200efe8feda560a5fa"}, + {file = "scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45484bee6d65633752c490404513b9ef02475b4284c4cfab0ef946def50b3f59"}, + {file = "scipy-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:5713f62f781eebd8d597eb3f88b8bf9274e79eeabf63afb4a737abc6c84ad37b"}, + {file = "scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5d72782f39716b2b3509cd7c33cdc08c96f2f4d2b06d51e52fb45a19ca0c86a1"}, + {file = "scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:017367484ce5498445aade74b1d5ab377acdc65e27095155e448c88497755a5d"}, + {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:949ae67db5fa78a86e8fa644b9a6b07252f449dcf74247108c50e1d20d2b4627"}, + {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3ade0e53bc1f21358aa74ff4830235d716211d7d077e340c7349bc3542e884"}, + {file = "scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ac65fb503dad64218c228e2dc2d0a0193f7904747db43014645ae139c8fad16"}, + {file = "scipy-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:cdd7dacfb95fea358916410ec61bbc20440f7860333aee6d882bb8046264e949"}, + {file = "scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:436bbb42a94a8aeef855d755ce5a465479c721e9d684de76bf61a62e7c2b81d5"}, + {file = "scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8335549ebbca860c52bf3d02f80784e91a004b71b059e3eea9678ba994796a24"}, + {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d533654b7d221a6a97304ab63c41c96473ff04459e404b83275b60aa8f4b7004"}, + {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637e98dcf185ba7f8e663e122ebf908c4702420477ae52a04f9908707456ba4d"}, + {file = "scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a014c2b3697bde71724244f63de2476925596c24285c7a637364761f8710891c"}, + {file = "scipy-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:392e4ec766654852c25ebad4f64e4e584cf19820b980bc04960bca0b0cd6eaa2"}, + {file = "scipy-1.13.1.tar.gz", hash = "sha256:095a87a0312b08dfd6a6155cbbd310a8c51800fc931b8c0b84003014b874ed3c"}, +] + +[package.dependencies] +numpy = ">=1.22.4,<2.3" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.12.0)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] +test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "snowballstemmer" +version = "2.2.0" +description = "This package provides 29 stemmers for 28 languages generated from Snowball algorithms." +optional = false +python-versions = "*" +files = [ + {file = "snowballstemmer-2.2.0-py2.py3-none-any.whl", hash = "sha256:c8e1716e83cc398ae16824e5572ae04e0d9fc2c6b985fb0f900f5f0c96ecba1a"}, + {file = "snowballstemmer-2.2.0.tar.gz", hash = "sha256:09b16deb8547d3412ad7b590689584cd0fe25ec8db3be37788be3810cbf19cb1"}, +] + +[[package]] +name = "soupsieve" +version = "2.5" +description = "A modern CSS selector implementation for Beautiful Soup." +optional = false +python-versions = ">=3.8" +files = [ + {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"}, + {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"}, +] + +[[package]] +name = "sphinx" +version = "7.4.7" +description = "Python documentation generator" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinx-7.4.7-py3-none-any.whl", hash = "sha256:c2419e2135d11f1951cd994d6eb18a1835bd8fdd8429f9ca375dc1f3281bd239"}, + {file = "sphinx-7.4.7.tar.gz", hash = "sha256:242f92a7ea7e6c5b406fdc2615413890ba9f699114a9c09192d7dfead2ee9cfe"}, +] + +[package.dependencies] +alabaster = ">=0.7.14,<0.8.0" +babel = ">=2.13" +colorama = {version = ">=0.4.6", markers = "sys_platform == \"win32\""} +docutils = ">=0.20,<0.22" +imagesize = ">=1.3" +importlib-metadata = {version = ">=6.0", markers = "python_version < \"3.10\""} +Jinja2 = ">=3.1" +packaging = ">=23.0" +Pygments = ">=2.17" +requests = ">=2.30.0" +snowballstemmer = ">=2.2" +sphinxcontrib-applehelp = "*" +sphinxcontrib-devhelp = "*" +sphinxcontrib-htmlhelp = ">=2.0.0" +sphinxcontrib-jsmath = "*" +sphinxcontrib-qthelp = "*" +sphinxcontrib-serializinghtml = ">=1.1.9" +tomli = {version = ">=2", markers = "python_version < \"3.11\""} + +[package.extras] +docs = ["sphinxcontrib-websupport"] +lint = ["flake8 (>=6.0)", "importlib-metadata (>=6.0)", "mypy (==1.10.1)", "pytest (>=6.0)", "ruff (==0.5.2)", "sphinx-lint (>=0.9)", "tomli (>=2)", "types-docutils (==0.21.0.20240711)", "types-requests (>=2.30.0)"] +test = ["cython (>=3.0)", "defusedxml (>=0.7.1)", "pytest (>=8.0)", "setuptools (>=70.0)", "typing_extensions (>=4.9)"] + +[[package]] +name = "sphinx-multiversion" +version = "0.2.4" +description = "Add support for multiple versions to sphinx" +optional = false +python-versions = "*" +files = [] +develop = false + +[package.dependencies] +sphinx = ">=2.1" + +[package.source] +type = "git" +url = "https://github.com/J-RN/sphinx-multiversion" +reference = "a77f0c862dace3a62c18fc866da60ef7dde3873d" +resolved_reference = "a77f0c862dace3a62c18fc866da60ef7dde3873d" + +[[package]] +name = "sphinxcontrib-applehelp" +version = "2.0.0" +description = "sphinxcontrib-applehelp is a Sphinx extension which outputs Apple help books" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_applehelp-2.0.0-py3-none-any.whl", hash = "sha256:4cd3f0ec4ac5dd9c17ec65e9ab272c9b867ea77425228e68ecf08d6b28ddbdb5"}, + {file = "sphinxcontrib_applehelp-2.0.0.tar.gz", hash = "sha256:2f29ef331735ce958efa4734873f084941970894c6090408b079c61b2e1c06d1"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["pytest"] + +[[package]] +name = "sphinxcontrib-devhelp" +version = "2.0.0" +description = "sphinxcontrib-devhelp is a sphinx extension which outputs Devhelp documents" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_devhelp-2.0.0-py3-none-any.whl", hash = "sha256:aefb8b83854e4b0998877524d1029fd3e6879210422ee3780459e28a1f03a8a2"}, + {file = "sphinxcontrib_devhelp-2.0.0.tar.gz", hash = "sha256:411f5d96d445d1d73bb5d52133377b4248ec79db5c793ce7dbe59e074b4dd1ad"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["pytest"] + +[[package]] +name = "sphinxcontrib-htmlhelp" +version = "2.1.0" +description = "sphinxcontrib-htmlhelp is a sphinx extension which renders HTML help files" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_htmlhelp-2.1.0-py3-none-any.whl", hash = "sha256:166759820b47002d22914d64a075ce08f4c46818e17cfc9470a9786b759b19f8"}, + {file = "sphinxcontrib_htmlhelp-2.1.0.tar.gz", hash = "sha256:c9e2916ace8aad64cc13a0d233ee22317f2b9025b9cf3295249fa985cc7082e9"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["html5lib", "pytest"] + +[[package]] +name = "sphinxcontrib-jsmath" +version = "1.0.1" +description = "A sphinx extension which renders display math in HTML via JavaScript" +optional = false +python-versions = ">=3.5" +files = [ + {file = "sphinxcontrib-jsmath-1.0.1.tar.gz", hash = "sha256:a9925e4a4587247ed2191a22df5f6970656cb8ca2bd6284309578f2153e0c4b8"}, + {file = "sphinxcontrib_jsmath-1.0.1-py2.py3-none-any.whl", hash = "sha256:2ec2eaebfb78f3f2078e73666b1415417a116cc848b72e5172e596c871103178"}, +] + +[package.extras] +test = ["flake8", "mypy", "pytest"] + +[[package]] +name = "sphinxcontrib-qthelp" +version = "2.0.0" +description = "sphinxcontrib-qthelp is a sphinx extension which outputs QtHelp documents" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_qthelp-2.0.0-py3-none-any.whl", hash = "sha256:b18a828cdba941ccd6ee8445dbe72ffa3ef8cbe7505d8cd1fa0d42d3f2d5f3eb"}, + {file = "sphinxcontrib_qthelp-2.0.0.tar.gz", hash = "sha256:4fe7d0ac8fc171045be623aba3e2a8f613f8682731f9153bb2e40ece16b9bbab"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["defusedxml (>=0.7.1)", "pytest"] + +[[package]] +name = "sphinxcontrib-serializinghtml" +version = "2.0.0" +description = "sphinxcontrib-serializinghtml is a sphinx extension which outputs \"serialized\" HTML files (json and pickle)" +optional = false +python-versions = ">=3.9" +files = [ + {file = "sphinxcontrib_serializinghtml-2.0.0-py3-none-any.whl", hash = "sha256:6e2cb0eef194e10c27ec0023bfeb25badbbb5868244cf5bc5bdc04e4464bf331"}, + {file = "sphinxcontrib_serializinghtml-2.0.0.tar.gz", hash = "sha256:e9d912827f872c029017a53f0ef2180b327c3f7fd23c87229f7a8e8b70031d4d"}, +] + +[package.extras] +lint = ["mypy", "ruff (==0.5.5)", "types-docutils"] +standalone = ["Sphinx (>=5)"] +test = ["pytest"] + +[[package]] +name = "sqlalchemy" +version = "1.4.54" +description = "Database Abstraction Library" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "SQLAlchemy-1.4.54-cp310-cp310-macosx_12_0_x86_64.whl", hash = "sha256:af00236fe21c4d4f4c227b6ccc19b44c594160cc3ff28d104cdce85855369277"}, + {file = "SQLAlchemy-1.4.54-cp310-cp310-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1183599e25fa38a1a322294b949da02b4f0da13dbc2688ef9dbe746df573f8a6"}, + {file = "SQLAlchemy-1.4.54-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1990d5a6a5dc358a0894c8ca02043fb9a5ad9538422001fb2826e91c50f1d539"}, + {file = "SQLAlchemy-1.4.54-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:14b3f4783275339170984cadda66e3ec011cce87b405968dc8d51cf0f9997b0d"}, + {file = "SQLAlchemy-1.4.54-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b24364150738ce488333b3fb48bfa14c189a66de41cd632796fbcacb26b4585"}, + {file = "SQLAlchemy-1.4.54-cp310-cp310-win32.whl", hash = "sha256:a8a72259a1652f192c68377be7011eac3c463e9892ef2948828c7d58e4829988"}, + {file = "SQLAlchemy-1.4.54-cp310-cp310-win_amd64.whl", hash = "sha256:b67589f7955924865344e6eacfdcf70675e64f36800a576aa5e961f0008cde2a"}, + {file = "SQLAlchemy-1.4.54-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:b05e0626ec1c391432eabb47a8abd3bf199fb74bfde7cc44a26d2b1b352c2c6e"}, + {file = "SQLAlchemy-1.4.54-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:13e91d6892b5fcb94a36ba061fb7a1f03d0185ed9d8a77c84ba389e5bb05e936"}, + {file = "SQLAlchemy-1.4.54-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fb59a11689ff3c58e7652260127f9e34f7f45478a2f3ef831ab6db7bcd72108f"}, + {file = "SQLAlchemy-1.4.54-cp311-cp311-win32.whl", hash = "sha256:1390ca2d301a2708fd4425c6d75528d22f26b8f5cbc9faba1ddca136671432bc"}, + {file = "SQLAlchemy-1.4.54-cp311-cp311-win_amd64.whl", hash = "sha256:2b37931eac4b837c45e2522066bda221ac6d80e78922fb77c75eb12e4dbcdee5"}, + {file = "SQLAlchemy-1.4.54-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:3f01c2629a7d6b30d8afe0326b8c649b74825a0e1ebdcb01e8ffd1c920deb07d"}, + {file = "SQLAlchemy-1.4.54-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c24dd161c06992ed16c5e528a75878edbaeced5660c3db88c820f1f0d3fe1f4"}, + {file = "SQLAlchemy-1.4.54-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b5e0d47d619c739bdc636bbe007da4519fc953393304a5943e0b5aec96c9877c"}, + {file = "SQLAlchemy-1.4.54-cp312-cp312-win32.whl", hash = "sha256:12bc0141b245918b80d9d17eca94663dbd3f5266ac77a0be60750f36102bbb0f"}, + {file = "SQLAlchemy-1.4.54-cp312-cp312-win_amd64.whl", hash = "sha256:f941aaf15f47f316123e1933f9ea91a6efda73a161a6ab6046d1cde37be62c88"}, + {file = "SQLAlchemy-1.4.54-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:a41611835010ed4ea4c7aed1da5b58aac78ee7e70932a91ed2705a7b38e40f52"}, + {file = "SQLAlchemy-1.4.54-cp36-cp36m-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e8c1b9ecaf9f2590337d5622189aeb2f0dbc54ba0232fa0856cf390957584a9"}, + {file = "SQLAlchemy-1.4.54-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0de620f978ca273ce027769dc8db7e6ee72631796187adc8471b3c76091b809e"}, + {file = "SQLAlchemy-1.4.54-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:c5a2530400a6e7e68fd1552a55515de6a4559122e495f73554a51cedafc11669"}, + {file = "SQLAlchemy-1.4.54-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cf7076c8578b3de4e43a046cc7a1af8466e1c3f5e64167189fe8958a4f9c02"}, + {file = "SQLAlchemy-1.4.54-cp37-cp37m-macosx_11_0_x86_64.whl", hash = "sha256:f1e1b92ee4ee9ffc68624ace218b89ca5ca667607ccee4541a90cc44999b9aea"}, + {file = "SQLAlchemy-1.4.54-cp37-cp37m-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41cffc63c7c83dfc30c4cab5b4308ba74440a9633c4509c51a0c52431fb0f8ab"}, + {file = "SQLAlchemy-1.4.54-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b5933c45d11cbd9694b1540aa9076816cc7406964c7b16a380fd84d3a5fe3241"}, + {file = "SQLAlchemy-1.4.54-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cafe0ba3a96d0845121433cffa2b9232844a2609fce694fcc02f3f31214ece28"}, + {file = "SQLAlchemy-1.4.54-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a19f816f4702d7b1951d7576026c7124b9bfb64a9543e571774cf517b7a50b29"}, + {file = "SQLAlchemy-1.4.54-cp37-cp37m-win32.whl", hash = "sha256:76c2ba7b5a09863d0a8166fbc753af96d561818c572dbaf697c52095938e7be4"}, + {file = "SQLAlchemy-1.4.54-cp37-cp37m-win_amd64.whl", hash = "sha256:a86b0e4be775902a5496af4fb1b60d8a2a457d78f531458d294360b8637bb014"}, + {file = "SQLAlchemy-1.4.54-cp38-cp38-macosx_12_0_x86_64.whl", hash = "sha256:a49730afb716f3f675755afec109895cab95bc9875db7ffe2e42c1b1c6279482"}, + {file = "SQLAlchemy-1.4.54-cp38-cp38-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26e78444bc77d089e62874dc74df05a5c71f01ac598010a327881a48408d0064"}, + {file = "SQLAlchemy-1.4.54-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:02d2ecb9508f16ab9c5af466dfe5a88e26adf2e1a8d1c56eb616396ccae2c186"}, + {file = "SQLAlchemy-1.4.54-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:394b0135900b62dbf63e4809cdc8ac923182af2816d06ea61cd6763943c2cc05"}, + {file = "SQLAlchemy-1.4.54-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ed3576675c187e3baa80b02c4c9d0edfab78eff4e89dd9da736b921333a2432"}, + {file = "SQLAlchemy-1.4.54-cp38-cp38-win32.whl", hash = "sha256:fc9ffd9a38e21fad3e8c5a88926d57f94a32546e937e0be46142b2702003eba7"}, + {file = "SQLAlchemy-1.4.54-cp38-cp38-win_amd64.whl", hash = "sha256:a01bc25eb7a5688656c8770f931d5cb4a44c7de1b3cec69b84cc9745d1e4cc10"}, + {file = "SQLAlchemy-1.4.54-cp39-cp39-macosx_12_0_x86_64.whl", hash = "sha256:0b76bbb1cbae618d10679be8966f6d66c94f301cfc15cb49e2f2382563fb6efb"}, + {file = "SQLAlchemy-1.4.54-cp39-cp39-manylinux1_x86_64.manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_5_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdb2886c0be2c6c54d0651d5a61c29ef347e8eec81fd83afebbf7b59b80b7393"}, + {file = "SQLAlchemy-1.4.54-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:954816850777ac234a4e32b8c88ac1f7847088a6e90cfb8f0e127a1bf3feddff"}, + {file = "SQLAlchemy-1.4.54-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:1d83cd1cc03c22d922ec94d0d5f7b7c96b1332f5e122e81b1a61fb22da77879a"}, + {file = "SQLAlchemy-1.4.54-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1576fba3616f79496e2f067262200dbf4aab1bb727cd7e4e006076686413c80c"}, + {file = "SQLAlchemy-1.4.54-cp39-cp39-win32.whl", hash = "sha256:3112de9e11ff1957148c6de1df2bc5cc1440ee36783412e5eedc6f53638a577d"}, + {file = "SQLAlchemy-1.4.54-cp39-cp39-win_amd64.whl", hash = "sha256:6da60fb24577f989535b8fc8b2ddc4212204aaf02e53c4c7ac94ac364150ed08"}, + {file = "sqlalchemy-1.4.54.tar.gz", hash = "sha256:4470fbed088c35dc20b78a39aaf4ae54fe81790c783b3264872a0224f437c31a"}, +] + +[package.dependencies] +greenlet = {version = "!=0.4.17", markers = "python_version >= \"3\" and (platform_machine == \"aarch64\" or platform_machine == \"ppc64le\" or platform_machine == \"x86_64\" or platform_machine == \"amd64\" or platform_machine == \"AMD64\" or platform_machine == \"win32\" or platform_machine == \"WIN32\")"} + +[package.extras] +aiomysql = ["aiomysql (>=0.2.0)", "greenlet (!=0.4.17)"] +aiosqlite = ["aiosqlite", "greenlet (!=0.4.17)", "typing_extensions (!=3.10.0.1)"] +asyncio = ["greenlet (!=0.4.17)"] +asyncmy = ["asyncmy (>=0.2.3,!=0.2.4)", "greenlet (!=0.4.17)"] +mariadb-connector = ["mariadb (>=1.0.1,!=1.1.2)", "mariadb (>=1.0.1,!=1.1.2)"] +mssql = ["pyodbc"] +mssql-pymssql = ["pymssql", "pymssql"] +mssql-pyodbc = ["pyodbc", "pyodbc"] +mypy = ["mypy (>=0.910)", "sqlalchemy2-stubs"] +mysql = ["mysqlclient (>=1.4.0)", "mysqlclient (>=1.4.0,<2)"] +mysql-connector = ["mysql-connector-python", "mysql-connector-python"] +oracle = ["cx_oracle (>=7)", "cx_oracle (>=7,<8)"] +postgresql = ["psycopg2 (>=2.7)"] +postgresql-asyncpg = ["asyncpg", "asyncpg", "greenlet (!=0.4.17)", "greenlet (!=0.4.17)"] +postgresql-pg8000 = ["pg8000 (>=1.16.6,!=1.29.0)", "pg8000 (>=1.16.6,!=1.29.0)"] +postgresql-psycopg2binary = ["psycopg2-binary"] +postgresql-psycopg2cffi = ["psycopg2cffi"] +pymysql = ["pymysql", "pymysql (<1)"] +sqlcipher = ["sqlcipher3_binary"] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "tabulate" +version = "0.9.0" +description = "Pretty-print tabular data" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"}, + {file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"}, +] + +[package.extras] +widechars = ["wcwidth"] + +[[package]] +name = "tenacity" +version = "8.4.1" +description = "Retry code until it succeeds" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tenacity-8.4.1-py3-none-any.whl", hash = "sha256:28522e692eda3e1b8f5e99c51464efcc0b9fc86933da92415168bc1c4e2308fa"}, + {file = "tenacity-8.4.1.tar.gz", hash = "sha256:54b1412b878ddf7e1f1577cd49527bad8cdef32421bd599beac0c6c3f10582fd"}, +] + +[package.extras] +doc = ["reno", "sphinx"] +test = ["pytest", "tornado (>=4.5)", "typeguard"] + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "tifffile" +version = "2023.7.10" +description = "Read and write TIFF files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tifffile-2023.7.10-py3-none-any.whl", hash = "sha256:94dfdec321ace96abbfe872a66cfd824800c099a2db558443453eebc2c11b304"}, + {file = "tifffile-2023.7.10.tar.gz", hash = "sha256:c06ec460926d16796eeee249a560bcdddf243daae36ac62af3c84a953cd60b4a"}, +] + +[package.dependencies] +numpy = "*" + +[package.extras] +all = ["defusedxml", "fsspec", "imagecodecs (>=2023.1.23)", "lxml", "matplotlib", "zarr"] + +[[package]] +name = "tomli" +version = "2.0.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, + {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, +] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, +] + +[[package]] +name = "urllib3" +version = "2.2.2" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "websocket-client" +version = "1.8.0" +description = "WebSocket client for Python with low level API options" +optional = false +python-versions = ">=3.8" +files = [ + {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, + {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, +] + +[package.extras] +docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] +optional = ["python-socks", "wsaccel"] +test = ["websockets"] + +[[package]] +name = "zipp" +version = "3.19.2" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, + {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, +] + +[package.extras] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] + +[metadata] +lock-version = "2.0" +python-versions = ">=3.9,<3.13" +content-hash = "7bf0a68da199cec360a9a70580fb005ea005403f32f4955e58fc673e7d9fa3d9" diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..3f51348 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,130 @@ +[build-system] +build-backend = "setuptools.build_meta" +requires = [ "setuptools>=64", "setuptools-scm>=8" ] + +[tool.poetry] +name = "CytoDataFrame" +version = "0.0.0" +description = "An in-memory data analysis format for single-cell profiles alongside their corresponding images and segmentation masks." +authors = [ "Way Science Community" ] +license = "BSD-3-Clause" +readme = "README.md" +packages = [ { include = "cytodataframe", from = "src" } ] + +[tool.poetry.dependencies] +python = ">=3.9,<3.13" +# used for data management +pandas = [ + { version = "<2.2.2", python = "<3.9" }, + { version = "^2.2.2", python = ">=3.9" }, +] +# used for data ingest and export +pyarrow = "^16.0.0" +# used for report generation capabilities +plotly = "^5.22.0" +# used for plotly dependencies +kaleido = "0.2.1" +# used for environment detection +ipython = "^8.12.3" +# used for image processing +scikit-image = [ + { version = "^0.19.3", python = "<3.9" }, + { version = ">0.19.3", python = ">=3.9" }, +] +# dependency of scikit-image +pywavelets = [ + { version = "^1.4.1", python = "<3.9" }, + { version = ">1.4.1", python = ">=3.9" }, +] +# used for image modifications in cytodataframe +opencv-python = "^4.10.0.84" +# used for report visualizations from within cytodataframe +cosmicqc = "^0.0.11" + +[tool.poetry.group.dev.dependencies] +# provides testing capabilities for project +pytest = "^8.2.0" +# used for report html export to image for tests +html2image = "^2.0.4.3" +# used for test data generation +sqlalchemy = ">=1.3.6,<2" +# added to generate test coverage reports +coverage = "^7.6.0" + +[tool.poetry.group.docs.dependencies] +# used for rendering docs into docsite +sphinx = "^7.0.0" +# used for rendering markdown through sphinx +myst-parser = "^3.0.0" +# used for rendering notebooks through myst parser +myst-nb = "^1.1.1" +# used for extension sphinx-multiversion and to fix git-based challenges with default branch handling +sphinx-multiversion = { git = "https://github.com/J-RN/sphinx-multiversion", rev = "a77f0c862dace3a62c18fc866da60ef7dde3873d" } +# used for gathering version data for docsite +dunamai = "^1.22.0" +# used for theming the docsite +pydata-sphinx-theme = "^0.16.0" + +[tool.poetry-dynamic-versioning] +enable = true +style = "pep440" +vcs = "git" + +# specify where version replacement is performed +[tool.poetry-dynamic-versioning.substitution] +files = [ "src/CytoDataFrame/__init__.py" ] + +# defines various development tasks + +[tool.setuptools_scm] +root = "." + +[tool.ruff] +target-version = "py38" +line-length = 88 +fix = true + +lint.select = [ + # flake8-builtins + "A", + # flake8-annotations + "ANN", + # flake8-comprehensions + "C4", + # mccabe + "C90", + # pycodestyle + "E", + # pyflakes + "F", + # isort + "I", + # pylint + "PL", + # ruff + "RUF", + # flake8-simplify + "SIM", + "W", +] +# Ignore `E402` and `F401` (unused imports) in all `__init__.py` files +lint.per-file-ignores."__init__.py" = [ "E402", "F401" ] +# ignore typing rules for tests +lint.per-file-ignores."tests/*" = [ "ANN201", "PLR0913" ] + +[tool.pytest.ini_options] +markers = [ + "generate_report_image: tests which involve the creation of report images.", +] + +[tool.coverage.run] +# settings to avoid errors with cv2 and coverage +# see here for more: https://github.com/nedbat/coveragepy/issues/1653 +omit = [ + "config.py", + "config-3.py", +] + +[tool.bandit] +exclude_dirs = [ "tests" ] + diff --git a/src/cytodataframe/__init__.py b/src/cytodataframe/__init__.py new file mode 100644 index 0000000..81154a8 --- /dev/null +++ b/src/cytodataframe/__init__.py @@ -0,0 +1,9 @@ +""" +Initialization for cytodataframe package +""" + +from .frame import CytoDataFrame + +# note: version placeholder is updated during build +# by poetry-dynamic-versioning. +__version__ = "0.0.0" diff --git a/src/cytodataframe/frame.py b/src/cytodataframe/frame.py new file mode 100644 index 0000000..5ffe79b --- /dev/null +++ b/src/cytodataframe/frame.py @@ -0,0 +1,866 @@ +""" +Defines a CytoDataFrame class. +""" + +import base64 +import pathlib +import random +import re +import webbrowser +from io import BytesIO, StringIO +from typing import ( + Any, + Callable, + ClassVar, + Dict, + List, + Optional, + Tuple, + TypeVar, + Union, +) + +import numpy as np +import pandas as pd +import plotly +import plotly.colors as pc +import plotly.express as px +import plotly.graph_objects as go +import skimage +import skimage.io +import skimage.measure +from IPython import get_ipython +from jinja2 import Environment, FileSystemLoader +from pandas._config import ( + get_option, +) +from pandas.io.formats import ( + format as fmt, +) +from PIL import Image, ImageDraw + +from .image import adjust_image_brightness, is_image_too_dark + +# provide backwards compatibility for Self type in earlier Python versions. +# see: https://peps.python.org/pep-0484/#annotating-instance-and-class-methods +CytoDataFrame_type = TypeVar("CytoDataFrame_type", bound="CytoDataFrame") + + +class CytoDataFrame(pd.DataFrame): + """ + A class designed to enhance single-cell data handling by wrapping + pandas DataFrame capabilities, providing advanced methods for quality control, + comprehensive analysis, and image-based data processing. + + This class can initialize with either a pandas DataFrame or a file path (CSV, TSV, + TXT, or Parquet). When initialized with a file path, it reads the data into a + pandas DataFrame. It also includes capabilities to export data. + + Attributes: + _metadata (ClassVar[list[str]]): + A class-level attribute that includes custom attributes. + _custom_attrs (dict): + A dictionary to store custom attributes, such as data source, + context directory, and bounding box information. + """ + + _metadata: ClassVar = ["_custom_attrs"] + + def __init__( # noqa: PLR0912 + self: CytoDataFrame_type, + data: Union[CytoDataFrame_type, pd.DataFrame, str, pathlib.Path], + data_context_dir: Optional[str] = None, + data_bounding_box: Optional[pd.DataFrame] = None, + data_mask_context_dir: Optional[str] = None, + **kwargs: Dict[str, Any], + ) -> None: + """ + Initializes the CytoDataFrame with either a DataFrame or a file path. + + Args: + data (Union[CytoDataFrame_type, pd.DataFrame, str, pathlib.Path]): + The data source, either a pandas DataFrame or a file path. + data_context_dir (Optional[str]): + Directory context for the image data within the DataFrame. + data_bounding_box (Optional[pd.DataFrame]): + Bounding box data for the DataFrame images. + data_mask_context_dir: Optional[str]: + Directory context for the mask data for images. + **kwargs: + Additional keyword arguments to pass to the pandas read functions. + """ + + self._custom_attrs = { + "data_source": None, + "data_context_dir": None, + "data_bounding_box": None, + "data_mask_context_dir": None, + } + + if data_context_dir is not None: + self._custom_attrs["data_context_dir"] = data_context_dir + + if data_mask_context_dir is not None: + self._custom_attrs["data_mask_context_dir"] = data_mask_context_dir + + if isinstance(data, CytoDataFrame): + self._custom_attrs["data_source"] = data._custom_attrs["data_source"] + self._custom_attrs["data_context_dir"] = data._custom_attrs[ + "data_context_dir" + ] + self._custom_attrs["data_mask_context_dir"] = data._custom_attrs[ + "data_mask_context_dir" + ] + super().__init__(data) + elif isinstance(data, (pd.DataFrame, pd.Series)): + self._custom_attrs["data_source"] = ( + "pandas.DataFrame" + if isinstance(data, pd.DataFrame) + else "pandas.Series" + ) + super().__init__(data) + elif isinstance(data, (str, pathlib.Path)): + data_path = pathlib.Path(data) + self._custom_attrs["data_source"] = str(data_path) + + if data_context_dir is None: + self._custom_attrs["data_context_dir"] = str(data_path.parent) + else: + self._custom_attrs["data_context_dir"] = data_context_dir + + if data_path.suffix in {".csv", ".tsv", ".txt"} or data_path.suffixes == [ + ".csv", + ".gz", + ]: + data = pd.read_csv(data_path, **kwargs) + elif data_path.suffix == ".parquet": + data = pd.read_parquet(data_path, **kwargs) + else: + raise ValueError("Unsupported file format for CytoDataFrame.") + + super().__init__(data) + + else: + super().__init__(data) + + if data_bounding_box is None: + self._custom_attrs["data_bounding_box"] = self.get_bounding_box_from_data() + + else: + self._custom_attrs["data_bounding_box"] = data_bounding_box + + def __getitem__(self: CytoDataFrame_type, key: Union[int, str]) -> Any: # noqa: ANN401 + """ + Returns an element or a slice of the underlying pandas DataFrame. + + Args: + key: + The key or slice to access the data. + + Returns: + pd.DataFrame or any: + The selected element or slice of data. + """ + + result = super().__getitem__(key) + + if isinstance(result, pd.Series): + return result + + elif isinstance(result, pd.DataFrame): + return CytoDataFrame( + super().__getitem__(key), + data_context_dir=self._custom_attrs["data_context_dir"], + data_bounding_box=self._custom_attrs["data_bounding_box"], + data_mask_context_dir=self._custom_attrs["data_mask_context_dir"], + ) + + def _wrap_method( + self: CytoDataFrame_type, + method: Callable, + *args: List[Any], + **kwargs: Dict[str, Any], + ) -> Any: # noqa: ANN401 + """ + Wraps a given method to ensure that the returned result + is an CytoDataFrame if applicable. + + Args: + method (Callable): + The method to be called and wrapped. + *args (List[Any]): + Positional arguments to be passed to the method. + **kwargs (Dict[str, Any]): + Keyword arguments to be passed to the method. + + Returns: + Any: + The result of the method call. If the result is a pandas DataFrame, + it is wrapped in an CytoDataFrame instance with additional context + information (data context directory and data bounding box). + + """ + result = method(*args, **kwargs) + if isinstance(result, pd.DataFrame): + result = CytoDataFrame( + result, + data_context_dir=self._custom_attrs["data_context_dir"], + data_bounding_box=self._custom_attrs["data_bounding_box"], + data_mask_context_dir=self._custom_attrs["data_mask_context_dir"], + ) + return result + + def sort_values( + self: CytoDataFrame_type, *args: List[Any], **kwargs: Dict[str, Any] + ) -> CytoDataFrame_type: + """ + Sorts the DataFrame by the specified column(s) and returns a + new CytoDataFrame instance. + + Note: we wrap this method within CytoDataFrame to help ensure the consistent + return of CytoDataFrames in the context of pd.Series (which are + treated separately but have specialized processing within the + context of sort_values). + + Args: + *args (List[Any]): + Positional arguments to be passed to the pandas + DataFrame's `sort_values` method. + **kwargs (Dict[str, Any]): + Keyword arguments to be passed to the pandas + DataFrame's `sort_values` method. + + Returns: + CytoDataFrame_type: + A new instance of CytoDataFrame sorted by the specified column(s). + + """ + + return self._wrap_method(super().sort_values, *args, **kwargs) + + def get_bounding_box_from_data( + self: CytoDataFrame_type, + ) -> Optional[CytoDataFrame_type]: + """ + Retrieves bounding box data from the DataFrame based + on predefined column groups. + + This method identifies specific groups of columns representing bounding box + coordinates for different cellular components (cytoplasm, nuclei, cells) and + checks for their presence in the DataFrame. If all required columns are present, + it filters and returns a new CytoDataFrame instance containing only these + columns. + + Returns: + Optional[CytoDataFrame_type]: + A new instance of CytoDataFrame containing the bounding box columns if + they exist in the DataFrame. Returns None if the required columns + are not found. + + """ + # Define column groups and their corresponding conditions + column_groups = { + "cyto": [ + "Cytoplasm_AreaShape_BoundingBoxMaximum_X", + "Cytoplasm_AreaShape_BoundingBoxMaximum_Y", + "Cytoplasm_AreaShape_BoundingBoxMinimum_X", + "Cytoplasm_AreaShape_BoundingBoxMinimum_Y", + ], + "nuclei": [ + "Nuclei_AreaShape_BoundingBoxMaximum_X", + "Nuclei_AreaShape_BoundingBoxMaximum_Y", + "Nuclei_AreaShape_BoundingBoxMinimum_X", + "Nuclei_AreaShape_BoundingBoxMinimum_Y", + ], + "cells": [ + "Cells_AreaShape_BoundingBoxMaximum_X", + "Cells_AreaShape_BoundingBoxMaximum_Y", + "Cells_AreaShape_BoundingBoxMinimum_X", + "Cells_AreaShape_BoundingBoxMinimum_Y", + ], + } + + # Determine which group of columns to select based on availability in self.data + selected_group = None + for group, cols in column_groups.items(): + if all(col in self.columns.tolist() for col in cols): + selected_group = group + break + + # Assign the selected columns to self.bounding_box_df + if selected_group: + return self.filter(items=column_groups[selected_group]) + + return None + + def export( + self: CytoDataFrame_type, file_path: str, **kwargs: Dict[str, Any] + ) -> None: + """ + Exports the underlying pandas DataFrame to a file. + + Args: + file_path (str): + The path where the DataFrame should be saved. + **kwargs: + Additional keyword arguments to pass to the pandas to_* methods. + """ + + data_path = pathlib.Path(file_path) + + # export to csv + if ".csv" in data_path.suffixes: + self.to_csv(file_path, **kwargs) + # export to tsv + elif any(elem in data_path.suffixes for elem in (".tsv", ".txt")): + self.to_csv(file_path, sep="\t", **kwargs) + # export to parquet + elif data_path.suffix == ".parquet": + self.to_parquet(file_path, **kwargs) + else: + raise ValueError("Unsupported file format for export.") + + @staticmethod + def is_notebook_or_lab() -> bool: + """ + Determines if the code is being executed in a Jupyter notebook (.ipynb) + returning false if it is not. + + This method attempts to detect the interactive shell environment + using IPython's `get_ipython` function. It checks the class name of the current + IPython shell to distinguish between different execution environments. + + Returns: + bool: + - `True` + if the code is being executed in a Jupyter notebook (.ipynb). + - `False` + otherwise (e.g., standard Python shell, terminal IPython shell, + or scripts). + """ + try: + # check for type of session via ipython + shell = get_ipython().__class__.__name__ + if "ZMQInteractiveShell" in shell: + return True + elif "TerminalInteractiveShell" in shell: + return False + else: + return False + except NameError: + return False + + def show_report( + self: CytoDataFrame_type, + report_path: Optional[str] = None, + auto_open: bool = True, + color_palette: Optional[List[str]] = None, + ) -> None: + """ + Generates and displays a report based on the current DataFrame's data + quality control (DQC) columns. + + This method organizes the DQC columns from the DataFrame, creates + visualizations for each threshold set, and then either displays the + visualizations inline (if running in a Jupyter notebook or lab) or + opens an HTML report in the default web browser. + + Args: + report_path (Optional[str]): + The file path where the HTML report should be saved and displayed. + If `None`, the report will be displayed inline if in a notebook + or lab environment. + auto_open: bool: + Whether to automatically open the report. + color_palette Optional(List[str]): + Optional list for color palette to use. + + Raises: + ValueError: If the DataFrame does not contain any DQC columns. + """ + + # find all cosmicqc columns in the data using the prefix `cqc.` + cqc_cols = [col for col in self.columns.tolist() if "cqc." in col] + # organize column data into the threshold set name, threshold is_outlier col, + # and the threshold score columns as list + organized_columns = [ + [ + # name of the threshold set + threshold_set, + # column which includes boolean is_outlier data for threshold set + next( + ( + col + for col in cqc_cols + if f"cqc.{threshold_set}.is_outlier" in col + ), + None, + ), + # columns which show the data associated with thresholds + [col for col in cqc_cols if f"cqc.{threshold_set}.Z_Score." in col], + ] + for threshold_set in sorted({col.split(".")[1] for col in cqc_cols}) + ] + + # create figures for visualization based on the name, outlier status, + # and threshold scores + figures = [ + self.create_threshold_set_outlier_visualization( + df=self, + threshold_set_name=set_name, + col_outlier=col_outlier, + cols_threshold_scores=cols_threshold_scores, + color_palette=color_palette, + ) + for set_name, col_outlier, cols_threshold_scores in organized_columns + ] + + # if we're running in a notebook or jupyter lab, show the figures as-is + if self.is_notebook_or_lab() or report_path is None: + # if we should automatically open, show the figures + if auto_open: + for figure in figures: + figure.show() + + return figures + + # otherwise, create an html file with figures and open it with default browser + else: + html_path = self.create_figure_group_html( + figures=figures, report_path=report_path + ) + + # if we should auto open, show the html file in default web browser + if auto_open: + webbrowser.open(f"file://{pathlib.Path(html_path).resolve()}") + + print(f"Opened default web browser for report {html_path}") + + return html_path + + @staticmethod + def create_figure_group_html( + figures: List[plotly.graph_objs._figure.Figure], + report_path: Optional[str] = None, + ) -> str: + """ + Generates an HTML file containing multiple Plotly figures. + + This method takes a list of Plotly figure objects, converts them to HTML, + and embeds them into a template HTML file. The resulting HTML file is then + saved to the specified path. + + Args: + figures (List[plotly.graph_objs._figure.Figure]): + A list of Plotly figure objects to be included in the HTML report. + report_path (str): + The file path where the HTML report will be saved. + Defaults to "cosmicqc_outlier_report.html" when None. + + Returns: + str: The path to the saved HTML report. + """ + + # if we have none for the report path, use a default name. + if report_path is None: + report_path = "cosmicqc_outlier_report.html" + + # create wrapped html for figures + figure_html = "".join( + [ + f"
{fig.to_html(full_html=False)}
" + for fig in figures + ] + ) + + # configure jinja environment + env = Environment( + loader=FileSystemLoader(f"{pathlib.Path(__file__).parent!s}/data") + ) + # load a jinja template + template = env.get_template("report_template.html") + + # Render the template with Plotly figure HTML + rendered_html = template.render(figure_html=figure_html) + + # write the html to file + with open(report_path, "w") as f: + f.write(rendered_html) + + # return the path of the file + return report_path + + def create_threshold_set_outlier_visualization( + self: CytoDataFrame_type, + df: pd.DataFrame, + threshold_set_name: str, + col_outlier: str, + cols_threshold_scores: List[str], + color_palette: Optional[List[str]] = None, + ) -> plotly.graph_objs._figure.Figure: + """ + Creates a Plotly figure visualizing the Z-score distributions and outliers + for a given threshold set. + + This method generates histograms for each Z-score column in the given DataFrame, + colors them based on outlier status, and overlays them into a single figure. + + Args: + df (pd.DataFrame): + The DataFrame containing the data to be visualized. + threshold_set_name (str): + The name of the threshold set being visualized. + col_outlier (str): + The column name indicating outlier status. + cols_threshold_scores (List[str]): + A list of column names representing the Z-scores to be visualized. + color_palette Optional(List[str]): + Optional list for color palette to use. + Defaults to use Dark24 color palette from Plotly. + + Returns: + plotly.graph_objs._figure.Figure: + A Plotly figure object containing the visualization. + """ + + # Create histograms using plotly.express with pattern_shape and random color + figures = [ + px.histogram( + df, + x=col, + color=col_outlier, + nbins=50, + pattern_shape=col_outlier, + opacity=0.7, + ) + for col in cols_threshold_scores + ] + + # Create a combined figure + fig = go.Figure() + + # check that we have enough colors for figures if provided + if color_palette is not None and len(color_palette) < len(figures): + raise ReferenceError( + f"Color palette length must match figure length of {len(figures)}." + ) + + # Add traces from each histogram and modify colors, names, and pattern shapes + for idx, fig_hist in enumerate(figures): + if color_palette is None: + # Create a default list of colors from a Plotly color palette + fig_color = random.choice(pc.qualitative.Dark24) + else: + # otherwise, use static color palette based on the number of figures + fig_color = color_palette[idx] + + for trace in fig_hist.data: + trace.marker.color = fig_color + trace.marker.pattern.shape = ( + "x" if trace.name == "True" else "" + ) # Use pattern shapes + renamed_col = cols_threshold_scores[idx].replace( + f"cqc.{threshold_set_name}.Z_Score.", "" + ) + trace.name = ( + f"{renamed_col} ({'outlier' if trace.name == 'True' else 'inlier'})" + ) + # Update hovertemplate to match the name in the key + trace.hovertemplate = ( + f"{renamed_col}
" + + "Z-Score: %{x}
" + + "Single-cell Count (log): %{y}
" + + "" + ) + fig.add_trace(trace) + + # Update layout + fig.update_layout( + title=f"{threshold_set_name.replace('_', ' ').title()} Z-Score Outliers", + xaxis_title="Z-Score", + yaxis_title="Single-cell Count (log)", + yaxis_type="log", + # ensures that histograms are overlapping + barmode="overlay", + legend_title_text="Measurement Type and QC Status", + legend={ + "orientation": "v", + "yanchor": "top", + "y": 0.95, + "xanchor": "left", + "x": 1.02, + }, + ) + + return fig + + def find_image_columns(self: CytoDataFrame_type) -> bool: + pattern = r".*\.(tif|tiff)$" + return [ + column + for column in self.columns + if self[column] + .apply( + lambda value: isinstance(value, str) + and re.match(pattern, value, flags=re.IGNORECASE) + ) + .any() + ] + + @staticmethod + def draw_outline_on_image(actual_image_path: str, mask_image_path: str) -> Image: + """ + Draws outlines on a TIFF image based on a mask image and returns + the combined result. + + This method takes the path to a TIFF image and a mask image, creates + an outline from the mask, and overlays it on the TIFF image. The resulting + image, which combines the TIFF image with the mask outline, is returned. + + Args: + actual_image_path (str): Path to the TIFF image file. + mask_image_path (str): Path to the mask image file. + + Returns: + PIL.Image.Image: A PIL Image object that is the result of + combining the TIFF image with the mask outline. + + Raises: + FileNotFoundError: If the specified image or mask file does not exist. + ValueError: If the images are not in compatible formats or sizes. + """ + # Load the TIFF image + tiff_image_array = skimage.io.imread(actual_image_path) + + # Check if the image is 16-bit and grayscale + if tiff_image_array.dtype == np.uint16: + # Normalize the image to 8-bit for display purposes + tiff_image_array = (tiff_image_array / 256).astype(np.uint8) + + # Convert to PIL Image and then to 'RGBA' + tiff_image = Image.fromarray(tiff_image_array).convert("RGBA") + + # Check if the image is too dark and adjust brightness if needed + if is_image_too_dark(tiff_image): + tiff_image = adjust_image_brightness(tiff_image) + + # Load the mask image and convert it to grayscale + mask_image = Image.open(mask_image_path).convert("L") + mask_array = np.array(mask_image) + mask_array[mask_array > 0] = 255 # Ensure non-zero values are 255 (white) + + # Find contours of the mask + contours = skimage.measure.find_contours(mask_array, level=128) + + # Create an outline image with transparent background + outline_image = Image.new("RGBA", tiff_image.size, (0, 0, 0, 0)) + draw = ImageDraw.Draw(outline_image) + + for contour in contours: + # Swap x and y to match image coordinates + draw.line( + [(x, y) for y, x in np.round(contour).astype(int)], + fill=(0, 255, 0, 200), + width=2, + ) + + # Combine the TIFF image with the outline image + return Image.alpha_composite(tiff_image, outline_image) + + def process_image_data_as_html_display( + self: CytoDataFrame_type, + data_value: Any, # noqa: ANN401 + bounding_box: Tuple[int, int, int, int], + ) -> str: + if not pathlib.Path(data_value).is_file(): + # Use rglob to recursively search for a matching file + if candidate_paths := list( + pathlib.Path(self._custom_attrs["data_context_dir"]).rglob(data_value) + ): + # if we find a candidate, return the first one + candidate_path = candidate_paths[0] + else: + # we don't have any candidate paths so return the unmodified value + return data_value + + try: + if self._custom_attrs["data_mask_context_dir"] is not None and ( + matching_mask_file := list( + pathlib.Path(self._custom_attrs["data_mask_context_dir"]).rglob( + f"{pathlib.Path(candidate_path).stem}*" + ) + ) + ): + pil_image = self.draw_outline_on_image( + actual_image_path=candidate_path, + mask_image_path=matching_mask_file[0], + ) + + else: + # Read the TIFF image from the byte array + tiff_image = skimage.io.imread(candidate_path) + + # Convert the image array to a PIL Image + pil_image = Image.fromarray(tiff_image) + + cropped_img = pil_image.crop(bounding_box) + + # Save the PIL Image as PNG to a BytesIO object + png_bytes_io = BytesIO() + cropped_img.save(png_bytes_io, format="PNG") + + # Get the PNG byte data + png_bytes = png_bytes_io.getvalue() + + except (FileNotFoundError, ValueError): + # return the raw data value if we run into an exception of some kind + print("Unable to process image from {candidate_path}") + return data_value + + return ( + '' + ) + + def get_displayed_rows(self: CytoDataFrame_type) -> List[int]: + # Get the current display settings + max_rows = pd.get_option("display.max_rows") + min_rows = pd.get_option("display.min_rows") + + if len(self) <= max_rows: + # If the DataFrame has fewer rows than max_rows, all rows will be displayed + return self.index.tolist() + else: + # Calculate how many rows will be displayed at the beginning and end + half_min_rows = min_rows // 2 + start_display = self.index[:half_min_rows].tolist() + end_display = self.index[-half_min_rows:].tolist() + return start_display + end_display + + def _repr_html_( + self: CytoDataFrame_type, key: Optional[Union[int, str]] = None + ) -> str: + """ + Returns HTML representation of the underlying pandas DataFrame + for use within Juypyter notebook environments and similar. + + Referenced with modifications from: + https://github.com/pandas-dev/pandas/blob/v2.2.2/pandas/core/frame.py#L1216 + + Modifications added to help achieve image-based output for single-cell data + within the context of CytoDataFrame and coSMicQC. + + Mainly for Jupyter notebooks. + + Returns: + str: The data in a pandas DataFrame. + """ + + if self._info_repr(): + buf = StringIO() + self.info(buf=buf) + # need to escape the , should be the first line. + val = buf.getvalue().replace("<", r"<", 1) + val = val.replace(">", r">", 1) + return f"
{val}
" + + if get_option("display.notebook_repr_html"): + max_rows = get_option("display.max_rows") + min_rows = get_option("display.min_rows") + max_cols = get_option("display.max_columns") + show_dimensions = get_option("display.show_dimensions") + + # determine if we have image_cols to display + if image_cols := self.find_image_columns(): + # re-add bounding box cols if they are no longer available as in cases + # of masking or accessing various pandas attr's + bounding_box_externally_joined = False + + if self._custom_attrs["data_bounding_box"] is not None and not all( + col in self.columns.tolist() + for col in self._custom_attrs["data_bounding_box"].columns.tolist() + ): + data = self.join(other=self._custom_attrs["data_bounding_box"]) + bounding_box_externally_joined = True + else: + data = self.copy() + + # gather indices which will be displayed based on pandas configuration + display_indices = self.get_displayed_rows() + + # gather bounding box columns for use below + bounding_box_cols = self._custom_attrs["data_bounding_box"].columns.tolist() + + for image_col in image_cols: + data.loc[display_indices, image_col] = data.loc[display_indices].apply( + lambda row: self.process_image_data_as_html_display( + data_value=row[image_col], + bounding_box=( + # rows below are specified using the column name to + # determine which part of the bounding box the columns + # relate to (the list of column names could be in + # various order). + row[ + next( + col + for col in bounding_box_cols + if "Minimum_X" in col + ) + ], + row[ + next( + col + for col in bounding_box_cols + if "Minimum_Y" in col + ) + ], + row[ + next( + col + for col in bounding_box_cols + if "Maximum_X" in col + ) + ], + row[ + next( + col + for col in bounding_box_cols + if "Maximum_Y" in col + ) + ], + ), + ), + axis=1, + ) + + if bounding_box_externally_joined: + data = data.drop( + self._custom_attrs["data_bounding_box"].columns.tolist(), axis=1 + ) + + formatter = fmt.DataFrameFormatter( + data, + columns=None, + col_space=None, + na_rep="NaN", + formatters=None, + float_format=None, + sparsify=None, + justify=None, + index_names=True, + header=True, + index=True, + bold_rows=True, + # note: we avoid escapes to allow HTML rendering for images + escape=False, + max_rows=max_rows, + min_rows=min_rows, + max_cols=max_cols, + show_dimensions=show_dimensions, + decimal=".", + ) + + return fmt.DataFrameRenderer(formatter).to_html() + + else: + return None diff --git a/src/cytodataframe/image.py b/src/cytodataframe/image.py new file mode 100644 index 0000000..799b995 --- /dev/null +++ b/src/cytodataframe/image.py @@ -0,0 +1,66 @@ +""" +Helper functions for working with images in the context of CytoDataFrames. +""" + +import cv2 +import numpy as np +from PIL import Image, ImageEnhance + + +def is_image_too_dark(image: Image, pixel_brightness_threshold: float = 10.0) -> bool: + """ + Check if the image is too dark based on the mean brightness. + By "too dark" we mean not as visible to the human eye. + + Args: + image (Image): + The input PIL Image. + threshold (float): + The brightness threshold below which the image is considered too dark. + + Returns: + bool: + True if the image is too dark, False otherwise. + """ + # Convert the image to a numpy array and then to grayscale + img_array = np.array(image) + gray_image = cv2.cvtColor(img_array, cv2.COLOR_RGBA2GRAY) + + # Calculate the mean brightness + mean_brightness = np.mean(gray_image) + + return mean_brightness < pixel_brightness_threshold + + +def adjust_image_brightness(image: Image) -> Image: + """ + Adjust the brightness of an image using histogram equalization. + + Args: + image (Image): + The input PIL Image. + + Returns: + Image: + The brightness-adjusted PIL Image. + """ + # Convert the image to numpy array and then to grayscale + img_array = np.array(image) + gray_image = cv2.cvtColor(img_array, cv2.COLOR_RGBA2GRAY) + + # Apply histogram equalization to improve the contrast + equalized_image = cv2.equalizeHist(gray_image) + + # Convert back to RGBA + img_array[:, :, 0] = equalized_image # Update only the R channel + img_array[:, :, 1] = equalized_image # Update only the G channel + img_array[:, :, 2] = equalized_image # Update only the B channel + + # Convert back to PIL Image + enhanced_image = Image.fromarray(img_array) + + # Slightly reduce the brightness + enhancer = ImageEnhance.Brightness(enhanced_image) + reduced_brightness_image = enhancer.enhance(0.7) + + return reduced_brightness_image diff --git a/tests/__init__.py b/tests/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/tests/conftest.py b/tests/conftest.py new file mode 100644 index 0000000..a312b25 --- /dev/null +++ b/tests/conftest.py @@ -0,0 +1,144 @@ +""" +Fixtures for testing via pytest. +See here for more information: +https://docs.pytest.org/en/7.1.x/explanation/fixtures.html +""" + +import pathlib + +import numpy as np +import pandas as pd +import pytest +import skimage +from PIL import Image + + +@pytest.fixture(name="cytotable_CFReT_data_df") +def fixture_cytotable_CFReT_df(): + """ + Return df to test CytoTable CFReT_data + """ + return pd.read_parquet( + "tests/data/cytotable/CFRet_data/test_localhost231120090001_converted.parquet" + ) + + +@pytest.fixture(name="cytotable_NF1_data_parquet_shrunken") +def fixture_cytotable_NF1_data_parquet_shrunken(): + """ + Return df to test CytoTable NF1 data through shrunken parquet file + """ + return ( + "tests/data/cytotable/NF1_cellpainting_data_shrunken/" + "Plate_2_with_image_data_shrunken.parquet" + ) + + +@pytest.fixture(name="cytotable_nuclear_speckles_data_parquet") +def fixture_cytotable_nuclear_speckle_data_parquet(): + """ + Return df to test CytoTable nuclear speckles data through shrunken parquet file + """ + return "tests/data/cytotable/nuclear_speckles/test_slide1_converted.parquet" + + +@pytest.fixture(name="basic_outlier_dataframe") +def fixture_basic_outlier_dataframe(): + """ + Creates basic example data for use in tests + """ + return pd.DataFrame({"example_feature": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) + + +@pytest.fixture(name="basic_outlier_csv") +def fixture_basic_outlier_csv( + tmp_path: pathlib.Path, basic_outlier_dataframe: pd.DataFrame +): + """ + Creates basic example data csv for use in tests + """ + + basic_outlier_dataframe.to_csv( + csv_path := tmp_path / "basic_example.csv", index=False + ) + + return csv_path + + +@pytest.fixture(name="basic_outlier_csv_gz") +def fixture_basic_outlier_csv_gz( + tmp_path: pathlib.Path, basic_outlier_dataframe: pd.DataFrame +): + """ + Creates basic example data csv for use in tests + """ + + basic_outlier_dataframe.to_csv( + csv_gz_path := tmp_path / "example.csv.gz", index=False, compression="gzip" + ) + + return csv_gz_path + + +@pytest.fixture(name="basic_outlier_tsv") +def fixture_basic_outlier_tsv( + tmp_path: pathlib.Path, basic_outlier_dataframe: pd.DataFrame +): + """ + Creates basic example data tsv for use in tests + """ + + basic_outlier_dataframe.to_csv( + tsv_path := tmp_path / "example.tsv", sep="\t", index=False + ) + + return tsv_path + + +@pytest.fixture(name="basic_outlier_parquet") +def fixture_basic_outlier_parquet( + tmp_path: pathlib.Path, basic_outlier_dataframe: pd.DataFrame +): + """ + Creates basic example data parquet for use in tests + """ + + basic_outlier_dataframe.to_parquet( + parquet_path := tmp_path / "example.parquet", index=False + ) + + return parquet_path + + +@pytest.fixture +def fixture_dark_image(): + # Create a dark image (50x50 pixels, almost black) + dark_img_array = np.zeros((50, 50, 3), dtype=np.uint8) + return Image.fromarray(dark_img_array) + + +@pytest.fixture +def fixture_mid_brightness_image(): + # Create an image with medium brightness (50x50 pixels, mid gray) + mid_brightness_img_array = np.full((50, 50, 3), 128, dtype=np.uint8) + return Image.fromarray(mid_brightness_img_array) + + +@pytest.fixture +def fixture_bright_image(): + # Create a bright image (50x50 pixels, almost white) + bright_img_array = np.full((50, 50, 3), 255, dtype=np.uint8) + return Image.fromarray(bright_img_array) + + +@pytest.fixture +def fixture_nuclear_speckle_example_image(): + # create an image array from example nuclear speckle data + return Image.fromarray( + ( + skimage.io.imread( + "tests/data/cytotable/nuclear_speckles/images/plate1/slide1_A1_M10_CH0_Z09_illumcorrect.tiff" + ) + / 256 + ).astype(np.uint8) + ).convert("RGBA") diff --git a/tests/data/coSMicQC/show_report/cosmicqc_example_report.png b/tests/data/coSMicQC/show_report/cosmicqc_example_report.png new file mode 100644 index 0000000..ce2fbdc Binary files /dev/null and b/tests/data/coSMicQC/show_report/cosmicqc_example_report.png differ diff --git a/tests/data/cytotable/CFRet_data/shrink_source_data.py b/tests/data/cytotable/CFRet_data/shrink_source_data.py new file mode 100644 index 0000000..0a39f12 --- /dev/null +++ b/tests/data/cytotable/CFRet_data/shrink_source_data.py @@ -0,0 +1,24 @@ +""" +Module to shrink source data for testing. + +Original source of data: +https://github.com/WayScience/CFReT_data/blob/ +main/3.process_cfret_features/data/ +converted_profiles/localhost231120090001_converted.parquet +""" + +import os + +import pandas as pd + +# note: we assume the dataset has been manually added to the +# directory containing this module. +filename = f"{os.path.dirname(__file__)}/localhost231120090001_converted.parquet" + +# read the data from parquet, sample a fraction of the data +df = pd.read_parquet(filename).sample(frac=0.03, replace=True, random_state=1) + +# export to a new file +df.to_parquet( + f"{os.path.dirname(__file__)}/test_localhost231120090001_converted.parquet" +) diff --git a/tests/data/cytotable/NF1_cellpainting_data/NF1_plate2_export_masks.cppipe b/tests/data/cytotable/NF1_cellpainting_data/NF1_plate2_export_masks.cppipe new file mode 100644 index 0000000..b9c4567 --- /dev/null +++ b/tests/data/cytotable/NF1_cellpainting_data/NF1_plate2_export_masks.cppipe @@ -0,0 +1,227 @@ +CellProfiler Pipeline: http://www.cellprofiler.org +Version:5 +DateRevision:424 +GitHash: +ModuleCount:13 +HasImagePlaneDetails:False + +Images:[module_num:1|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['Images module is left blank as we are giving the path to the corrected images in the CLI']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + : + Filter images?:Images only + Select the rule criteria:and (extension does isimage) (directory doesnot containregexp "[\\\\/]\\.") + +Metadata:[module_num:2|svn_version:'Unknown'|variable_revision_number:6|show_window:False|notes:['Extract metadata from file names and folder names using regular expressions.', '', 'The only metadata that will be outputed in the SQLite DB file are:', '', 'Plate', 'Well', 'Site', '', 'The rest of the information is useful to make sure that the expression is working, but can be removed/not necessary.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Extract metadata?:Yes + Metadata data type:Text + Metadata types:{"Channel": "integer", "FileLocation": "text", "Frame": "text", "Plate": "text", "Series": "text", "Site": "integer", "Stain": "float", "Well": "text"} + Extraction method count:2 + Metadata extraction method:Extract from file/folder names + Metadata source:File name + Regular expression to extract from file name:(?P[A-Z]{1}[0-9]{1,2})_01_(?P[1-3]{1})_(?P[1-4]{1})_(?PDAPI|GFP|RFP) + Regular expression to extract from folder name:(?P[0-9]{4}_[0-9]{2}_[0-9]{2})$ + Extract metadata from:All images + Select the filtering criteria:and (file does contain "") + Metadata file location:Elsewhere...| + Match file and image metadata:[] + Use case insensitive matching?:No + Metadata file name:None + Does cached metadata exist?:No + Metadata extraction method:Extract from file/folder names + Metadata source:Folder name + Regular expression to extract from file name:^(?P.*)_(?P[A-P][0-9]{2})_s(?P[0-9])_w(?P[0-9]) + Regular expression to extract from folder name:Corrected_(?PPlate_[0-9]{1}) + Extract metadata from:All images + Select the filtering criteria:and (file does contain "") + Metadata file location:Elsewhere...| + Match file and image metadata:[] + Use case insensitive matching?:No + Metadata file name:None + Does cached metadata exist?:No + +NamesAndTypes:[module_num:3|svn_version:'Unknown'|variable_revision_number:8|show_window:False|notes:['Assign files to their respective channel (only 3):', '', 'DAPI', 'GFP', 'RFP']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Assign a name to:Images matching rules + Select the image type:Grayscale image + Name to assign these images:DNA + Match metadata:[] + Image set matching method:Order + Set intensity range from:Image metadata + Assignments count:3 + Single images count:0 + Maximum intensity:255.0 + Process as 3D?:No + Relative pixel spacing in X:1.0 + Relative pixel spacing in Y:1.0 + Relative pixel spacing in Z:1.0 + Select the rule criteria:and (file does contain "DAPI") + Name to assign these images:DAPI + Name to assign these objects:Cell + Select the image type:Grayscale image + Set intensity range from:Image metadata + Maximum intensity:255.0 + Select the rule criteria:and (file does contain "GFP") + Name to assign these images:GFP + Name to assign these objects:Nucleus + Select the image type:Grayscale image + Set intensity range from:Image metadata + Maximum intensity:255.0 + Select the rule criteria:and (file does contain "RFP") + Name to assign these images:RFP + Name to assign these objects:Cytoplasm + Select the image type:Grayscale image + Set intensity range from:Image metadata + Maximum intensity:255.0 + +Groups:[module_num:4|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['We do not use the Groups module.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Do you want to group your images?:No + grouping metadata count:1 + Metadata category:None + +IdentifyPrimaryObjects:[module_num:5|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:['These are the current best parameters to segment nuclei from the DAPI channel']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input image:DAPI + Name the primary objects to be identified:Nuclei + Typical diameter of objects, in pixel units (Min,Max):30,90 + Discard objects outside the diameter range?:Yes + Discard objects touching the border of the image?:Yes + Method to distinguish clumped objects:None + Method to draw dividing lines between clumped objects:Shape + Size of smoothing filter:10 + Suppress local maxima that are closer than this minimum allowed distance:7.0 + Speed up by using lower-resolution image to find local maxima?:Yes + Fill holes in identified objects?:After both thresholding and declumping + Automatically calculate size of smoothing filter for declumping?:Yes + Automatically calculate minimum allowed distance between local maxima?:Yes + Handling of objects if excessive number of objects identified:Continue + Maximum number of objects:500 + Use advanced settings?:Yes + Threshold setting version:12 + Threshold strategy:Global + Thresholding method:Otsu + Threshold smoothing scale:1.3488 + Threshold correction factor:1.0 + Lower and upper bounds on threshold:0.0,1.0 + Manual threshold:0.0 + Select the measurement to threshold with:None + Two-class or three-class thresholding?:Three classes + Log transform before thresholding?:No + Assign pixels in the middle intensity class to the foreground or the background?:Foreground + Size of adaptive window:50 + Lower outlier fraction:0.05 + Upper outlier fraction:0.05 + Averaging method:Mean + Variance method:Standard deviation + # of deviations:2.0 + Thresholding method:Minimum Cross-Entropy + +IdentifySecondaryObjects:[module_num:6|svn_version:'Unknown'|variable_revision_number:10|show_window:False|notes:['These are the current best parameters to segment whole cells using the RFP (actin) channel']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input objects:Nuclei + Name the objects to be identified:Cells + Select the method to identify the secondary objects:Propagation + Select the input image:RFP + Number of pixels by which to expand the primary objects:10 + Regularization factor:0.05 + Discard secondary objects touching the border of the image?:Yes + Discard the associated primary objects?:No + Name the new primary objects:Nuclei + Fill holes in identified objects?:Yes + Threshold setting version:12 + Threshold strategy:Global + Thresholding method:Otsu + Threshold smoothing scale:1.3488 + Threshold correction factor:1.0 + Lower and upper bounds on threshold:0.0,1.0 + Manual threshold:0.0 + Select the measurement to threshold with:None + Two-class or three-class thresholding?:Three classes + Log transform before thresholding?:No + Assign pixels in the middle intensity class to the foreground or the background?:Foreground + Size of adaptive window:50 + Lower outlier fraction:0.05 + Upper outlier fraction:0.05 + Averaging method:Mean + Variance method:Standard deviation + # of deviations:2.0 + Thresholding method:Otsu + +IdentifyTertiaryObjects:[module_num:7|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:['This module creates a third object from the first two where the nuclei is subtracted from the cells to create cytoplasm']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the larger identified objects:Cells + Select the smaller identified objects:Nuclei + Name the tertiary objects to be identified:Cytoplasm + Shrink smaller object prior to subtraction?:Yes + +ConvertObjectsToImage:[module_num:8|svn_version:'Unknown'|variable_revision_number:1|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input objects:Nuclei + Name the output image:MaskNuclei + Select the color format:Binary (black & white) + Select the colormap:Default + +ConvertObjectsToImage:[module_num:9|svn_version:'Unknown'|variable_revision_number:1|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input objects:Cells + Name the output image:MaskCells + Select the color format:Binary (black & white) + Select the colormap:Default + +ConvertObjectsToImage:[module_num:10|svn_version:'Unknown'|variable_revision_number:1|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input objects:Cytoplasm + Name the output image:MaskCytoplasm + Select the color format:Binary (black & white) + Select the colormap:Default + +SaveImages:[module_num:11|svn_version:'Unknown'|variable_revision_number:16|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the type of image to save:Image + Select the image to save:MaskNuclei + Select method for constructing file names:From image filename + Select image name for file prefix:DAPI + Enter single file name:OrigBlue + Number of digits:4 + Append a suffix to the image file name?:Yes + Text to append to the image name:_MaskNuclei + Saved file format:tiff + Output file location:Default Output Folder| + Image bit depth:8-bit integer + Overwrite existing files without warning?:No + When to save:Every cycle + Record the file and path information to the saved image?:No + Create subfolders in the output folder?:No + Base image folder:Elsewhere...| + How to save the series:T (Time) + Save with lossless compression?:Yes + +SaveImages:[module_num:12|svn_version:'Unknown'|variable_revision_number:16|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the type of image to save:Image + Select the image to save:MaskCells + Select method for constructing file names:From image filename + Select image name for file prefix:RFP + Enter single file name:OrigBlue + Number of digits:4 + Append a suffix to the image file name?:Yes + Text to append to the image name:_MaskCells + Saved file format:tiff + Output file location:Default Output Folder| + Image bit depth:8-bit integer + Overwrite existing files without warning?:No + When to save:Every cycle + Record the file and path information to the saved image?:No + Create subfolders in the output folder?:No + Base image folder:Elsewhere...| + How to save the series:T (Time) + Save with lossless compression?:Yes + +SaveImages:[module_num:13|svn_version:'Unknown'|variable_revision_number:16|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the type of image to save:Image + Select the image to save:MaskCytoplasm + Select method for constructing file names:From image filename + Select image name for file prefix:RFP + Enter single file name:OrigBlue + Number of digits:4 + Append a suffix to the image file name?:Yes + Text to append to the image name:_MaskCytoplasm + Saved file format:tiff + Output file location:Default Output Folder| + Image bit depth:8-bit integer + Overwrite existing files without warning?:No + When to save:Every cycle + Record the file and path information to the saved image?:No + Create subfolders in the output folder?:No + Base image folder:Elsewhere...| + How to save the series:T (Time) + Save with lossless compression?:Yes diff --git a/tests/data/cytotable/NF1_cellpainting_data/gather_and_create_data.py b/tests/data/cytotable/NF1_cellpainting_data/gather_and_create_data.py new file mode 100644 index 0000000..12d46eb --- /dev/null +++ b/tests/data/cytotable/NF1_cellpainting_data/gather_and_create_data.py @@ -0,0 +1,83 @@ +""" +Used for downloading and preparing data for use +with coSMicQC tests. + +This file may be processed using the following command from the root +of the project repository: +`poetry run python tests/data/cytotable/NF1_cellpainting_data/gather_and_create_data.py` +""" + +import pathlib +import subprocess +import zipfile + +import pandas as pd + +# Define the paths +test_data_path = "tests/data/cytotable/NF1_cellpainting_data/" +sqlite_url = "https://github.com/WayScience/nf1_cellpainting_data/raw/main/2.cellprofiler_analysis/analysis_output/Plate_2/Plate_2_nf1_analysis.sqlite" +sqlite_file_path = test_data_path + "Plate_2_nf1_analysis.sqlite" +parquet_url = "https://github.com/WayScience/nf1_cellpainting_data/raw/main/3.processing_features/data/converted_data/Plate_2.parquet" +parquet_file_path = test_data_path + "Plate_2.parquet" +image_zip_url = "https://figshare.com/ndownloader/articles/22233700/versions/4" +image_zip_file_path = test_data_path + "Plate_2_images.zip" +image_extract_dir = test_data_path + "Plate_2_images" +joined_data_path = test_data_path + "Plate_2_with_image_data.parquet" + +# for url and filepath, download the url as the filepath on local system +for url, file_path in zip( + [sqlite_url, parquet_url, image_zip_url], + [sqlite_file_path, parquet_file_path, image_zip_file_path], +): + if not pathlib.Path(file_path).is_file(): + print(f"Downloading {file_path}...") + subprocess.run(["wget", "-O", file_path, url], check=True) + print(f"Downloaded {file_path}") + +# Check if the zip file exists +if not pathlib.Path(image_zip_file_path).is_file(): + print(f"{image_zip_file_path} does not exist.") +else: + # Create the extraction directory if it doesn't exist + if not pathlib.Path(image_extract_dir).is_dir(): + pathlib.Path(image_extract_dir).mkdir(parents=True) + + # Extract the zip file + with zipfile.ZipFile(image_zip_file_path, "r") as zip_ref: + zip_ref.extractall(image_extract_dir) + + print(f"Extracted {image_zip_file_path} to {image_extract_dir}") + +# form parquet table which includes image paths +df_cytotable = pd.read_parquet(parquet_file_path) + +# read image data from the CellProfiler SQlite database +df_image = pd.read_sql( + sql="SELECT * FROM per_image;", con=f"sqlite:///{sqlite_file_path}" +) + +# merge the image data from the CellProfiler SQLite database +df_full = pd.merge( + left=df_cytotable, + right=df_image, + how="left", + left_on="Metadata_ImageNumber", + right_on="ImageNumber", +) + + +# modify the filename to match what was gathered from figshare +def modify_filename(file_path: str): + return file_path.replace("_illumcorrect.tiff", ".tif") + + +# apply the filename rename to several columns +df_full["Image_URL_DAPI"] = df_full["Image_URL_DAPI"].apply(modify_filename) +df_full["Image_URL_GFP"] = df_full["Image_URL_GFP"].apply(modify_filename) +df_full["Image_URL_RFP"] = df_full["Image_URL_RFP"].apply(modify_filename) +df_full["Image_FileName_DAPI"] = df_full["Image_FileName_DAPI"].apply(modify_filename) +df_full["Image_FileName_GFP"] = df_full["Image_FileName_GFP"].apply(modify_filename) +df_full["Image_FileName_RFP"] = df_full["Image_FileName_RFP"].apply(modify_filename) + +# export the result to parquet file +df_full.to_parquet(joined_data_path) diff --git a/tests/data/cytotable/NF1_cellpainting_data_shrunken/NF1_plate2_export_masks.cppipe b/tests/data/cytotable/NF1_cellpainting_data_shrunken/NF1_plate2_export_masks.cppipe new file mode 100644 index 0000000..b9c4567 --- /dev/null +++ b/tests/data/cytotable/NF1_cellpainting_data_shrunken/NF1_plate2_export_masks.cppipe @@ -0,0 +1,227 @@ +CellProfiler Pipeline: http://www.cellprofiler.org +Version:5 +DateRevision:424 +GitHash: +ModuleCount:13 +HasImagePlaneDetails:False + +Images:[module_num:1|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['Images module is left blank as we are giving the path to the corrected images in the CLI']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + : + Filter images?:Images only + Select the rule criteria:and (extension does isimage) (directory doesnot containregexp "[\\\\/]\\.") + +Metadata:[module_num:2|svn_version:'Unknown'|variable_revision_number:6|show_window:False|notes:['Extract metadata from file names and folder names using regular expressions.', '', 'The only metadata that will be outputed in the SQLite DB file are:', '', 'Plate', 'Well', 'Site', '', 'The rest of the information is useful to make sure that the expression is working, but can be removed/not necessary.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Extract metadata?:Yes + Metadata data type:Text + Metadata types:{"Channel": "integer", "FileLocation": "text", "Frame": "text", "Plate": "text", "Series": "text", "Site": "integer", "Stain": "float", "Well": "text"} + Extraction method count:2 + Metadata extraction method:Extract from file/folder names + Metadata source:File name + Regular expression to extract from file name:(?P[A-Z]{1}[0-9]{1,2})_01_(?P[1-3]{1})_(?P[1-4]{1})_(?PDAPI|GFP|RFP) + Regular expression to extract from folder name:(?P[0-9]{4}_[0-9]{2}_[0-9]{2})$ + Extract metadata from:All images + Select the filtering criteria:and (file does contain "") + Metadata file location:Elsewhere...| + Match file and image metadata:[] + Use case insensitive matching?:No + Metadata file name:None + Does cached metadata exist?:No + Metadata extraction method:Extract from file/folder names + Metadata source:Folder name + Regular expression to extract from file name:^(?P.*)_(?P[A-P][0-9]{2})_s(?P[0-9])_w(?P[0-9]) + Regular expression to extract from folder name:Corrected_(?PPlate_[0-9]{1}) + Extract metadata from:All images + Select the filtering criteria:and (file does contain "") + Metadata file location:Elsewhere...| + Match file and image metadata:[] + Use case insensitive matching?:No + Metadata file name:None + Does cached metadata exist?:No + +NamesAndTypes:[module_num:3|svn_version:'Unknown'|variable_revision_number:8|show_window:False|notes:['Assign files to their respective channel (only 3):', '', 'DAPI', 'GFP', 'RFP']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Assign a name to:Images matching rules + Select the image type:Grayscale image + Name to assign these images:DNA + Match metadata:[] + Image set matching method:Order + Set intensity range from:Image metadata + Assignments count:3 + Single images count:0 + Maximum intensity:255.0 + Process as 3D?:No + Relative pixel spacing in X:1.0 + Relative pixel spacing in Y:1.0 + Relative pixel spacing in Z:1.0 + Select the rule criteria:and (file does contain "DAPI") + Name to assign these images:DAPI + Name to assign these objects:Cell + Select the image type:Grayscale image + Set intensity range from:Image metadata + Maximum intensity:255.0 + Select the rule criteria:and (file does contain "GFP") + Name to assign these images:GFP + Name to assign these objects:Nucleus + Select the image type:Grayscale image + Set intensity range from:Image metadata + Maximum intensity:255.0 + Select the rule criteria:and (file does contain "RFP") + Name to assign these images:RFP + Name to assign these objects:Cytoplasm + Select the image type:Grayscale image + Set intensity range from:Image metadata + Maximum intensity:255.0 + +Groups:[module_num:4|svn_version:'Unknown'|variable_revision_number:2|show_window:False|notes:['We do not use the Groups module.']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Do you want to group your images?:No + grouping metadata count:1 + Metadata category:None + +IdentifyPrimaryObjects:[module_num:5|svn_version:'Unknown'|variable_revision_number:15|show_window:False|notes:['These are the current best parameters to segment nuclei from the DAPI channel']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input image:DAPI + Name the primary objects to be identified:Nuclei + Typical diameter of objects, in pixel units (Min,Max):30,90 + Discard objects outside the diameter range?:Yes + Discard objects touching the border of the image?:Yes + Method to distinguish clumped objects:None + Method to draw dividing lines between clumped objects:Shape + Size of smoothing filter:10 + Suppress local maxima that are closer than this minimum allowed distance:7.0 + Speed up by using lower-resolution image to find local maxima?:Yes + Fill holes in identified objects?:After both thresholding and declumping + Automatically calculate size of smoothing filter for declumping?:Yes + Automatically calculate minimum allowed distance between local maxima?:Yes + Handling of objects if excessive number of objects identified:Continue + Maximum number of objects:500 + Use advanced settings?:Yes + Threshold setting version:12 + Threshold strategy:Global + Thresholding method:Otsu + Threshold smoothing scale:1.3488 + Threshold correction factor:1.0 + Lower and upper bounds on threshold:0.0,1.0 + Manual threshold:0.0 + Select the measurement to threshold with:None + Two-class or three-class thresholding?:Three classes + Log transform before thresholding?:No + Assign pixels in the middle intensity class to the foreground or the background?:Foreground + Size of adaptive window:50 + Lower outlier fraction:0.05 + Upper outlier fraction:0.05 + Averaging method:Mean + Variance method:Standard deviation + # of deviations:2.0 + Thresholding method:Minimum Cross-Entropy + +IdentifySecondaryObjects:[module_num:6|svn_version:'Unknown'|variable_revision_number:10|show_window:False|notes:['These are the current best parameters to segment whole cells using the RFP (actin) channel']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input objects:Nuclei + Name the objects to be identified:Cells + Select the method to identify the secondary objects:Propagation + Select the input image:RFP + Number of pixels by which to expand the primary objects:10 + Regularization factor:0.05 + Discard secondary objects touching the border of the image?:Yes + Discard the associated primary objects?:No + Name the new primary objects:Nuclei + Fill holes in identified objects?:Yes + Threshold setting version:12 + Threshold strategy:Global + Thresholding method:Otsu + Threshold smoothing scale:1.3488 + Threshold correction factor:1.0 + Lower and upper bounds on threshold:0.0,1.0 + Manual threshold:0.0 + Select the measurement to threshold with:None + Two-class or three-class thresholding?:Three classes + Log transform before thresholding?:No + Assign pixels in the middle intensity class to the foreground or the background?:Foreground + Size of adaptive window:50 + Lower outlier fraction:0.05 + Upper outlier fraction:0.05 + Averaging method:Mean + Variance method:Standard deviation + # of deviations:2.0 + Thresholding method:Otsu + +IdentifyTertiaryObjects:[module_num:7|svn_version:'Unknown'|variable_revision_number:3|show_window:False|notes:['This module creates a third object from the first two where the nuclei is subtracted from the cells to create cytoplasm']|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the larger identified objects:Cells + Select the smaller identified objects:Nuclei + Name the tertiary objects to be identified:Cytoplasm + Shrink smaller object prior to subtraction?:Yes + +ConvertObjectsToImage:[module_num:8|svn_version:'Unknown'|variable_revision_number:1|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input objects:Nuclei + Name the output image:MaskNuclei + Select the color format:Binary (black & white) + Select the colormap:Default + +ConvertObjectsToImage:[module_num:9|svn_version:'Unknown'|variable_revision_number:1|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input objects:Cells + Name the output image:MaskCells + Select the color format:Binary (black & white) + Select the colormap:Default + +ConvertObjectsToImage:[module_num:10|svn_version:'Unknown'|variable_revision_number:1|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the input objects:Cytoplasm + Name the output image:MaskCytoplasm + Select the color format:Binary (black & white) + Select the colormap:Default + +SaveImages:[module_num:11|svn_version:'Unknown'|variable_revision_number:16|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the type of image to save:Image + Select the image to save:MaskNuclei + Select method for constructing file names:From image filename + Select image name for file prefix:DAPI + Enter single file name:OrigBlue + Number of digits:4 + Append a suffix to the image file name?:Yes + Text to append to the image name:_MaskNuclei + Saved file format:tiff + Output file location:Default Output Folder| + Image bit depth:8-bit integer + Overwrite existing files without warning?:No + When to save:Every cycle + Record the file and path information to the saved image?:No + Create subfolders in the output folder?:No + Base image folder:Elsewhere...| + How to save the series:T (Time) + Save with lossless compression?:Yes + +SaveImages:[module_num:12|svn_version:'Unknown'|variable_revision_number:16|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the type of image to save:Image + Select the image to save:MaskCells + Select method for constructing file names:From image filename + Select image name for file prefix:RFP + Enter single file name:OrigBlue + Number of digits:4 + Append a suffix to the image file name?:Yes + Text to append to the image name:_MaskCells + Saved file format:tiff + Output file location:Default Output Folder| + Image bit depth:8-bit integer + Overwrite existing files without warning?:No + When to save:Every cycle + Record the file and path information to the saved image?:No + Create subfolders in the output folder?:No + Base image folder:Elsewhere...| + How to save the series:T (Time) + Save with lossless compression?:Yes + +SaveImages:[module_num:13|svn_version:'Unknown'|variable_revision_number:16|show_window:False|notes:[]|batch_state:array([], dtype=uint8)|enabled:True|wants_pause:False] + Select the type of image to save:Image + Select the image to save:MaskCytoplasm + Select method for constructing file names:From image filename + Select image name for file prefix:RFP + Enter single file name:OrigBlue + Number of digits:4 + Append a suffix to the image file name?:Yes + Text to append to the image name:_MaskCytoplasm + Saved file format:tiff + Output file location:Default Output Folder| + Image bit depth:8-bit integer + Overwrite existing files without warning?:No + When to save:Every cycle + Record the file and path information to the saved image?:No + Create subfolders in the output folder?:No + Base image folder:Elsewhere...| + How to save the series:T (Time) + Save with lossless compression?:Yes diff --git a/tests/data/cytotable/NF1_cellpainting_data_shrunken/create_image_data.py b/tests/data/cytotable/NF1_cellpainting_data_shrunken/create_image_data.py new file mode 100644 index 0000000..a63eec1 --- /dev/null +++ b/tests/data/cytotable/NF1_cellpainting_data_shrunken/create_image_data.py @@ -0,0 +1,73 @@ +""" +Creates and shrunken dataset for testing puproses +based on coSMicQC/tests/data/cytotable/NF1_cellpainting_data (Plate 2) + +This file may be processed using the following command from the root +of the project repository: +`poetry run python tests/data/cytotable/NF1_cellpainting_data_shrunken/create.py` +""" + +import pathlib +import shutil + +import pandas as pd + +source_data_path = "tests/data/cytotable/NF1_cellpainting_data/" +target_data_path = "tests/data/cytotable/NF1_cellpainting_data_shrunken/" +source_image_data_path = source_data_path + "Plate_2_images" +source_parquet_path = source_data_path + "Plate_2_with_image_data.parquet" +target_image_data_path = target_data_path + "Plate_2_images" +target_parquet_path = target_data_path + "Plate_2_with_image_data_shrunken.parquet" + +# create target image dir +pathlib.Path(target_image_data_path).mkdir(exist_ok=True) + +# read source data +source_df = pd.read_parquet(source_parquet_path) + +# get a sample of 5 from the source data +sampled_df = source_df.sample(n=5) + +# send the sampled df to parquet file +sampled_df.to_parquet(target_parquet_path) + + +def check_and_copy_file(filename: str): + """ + Checks for files in target dir and copies them if they don't already exist + """ + source_path = f"{source_image_data_path}/{filename}" + target_path = f"{target_image_data_path}/{filename}" + + # Check if the file already exists in the target directory + if not pathlib.Path(target_path).is_file(): + # Copy the file if it doesn't exist + shutil.copy(source_path, target_path) + return f"Copied {filename} to {target_image_data_path}" + else: + return f"{filename} already exists in {target_image_data_path}" + + +# apply the file copy and collect status information +sampled_df["Image_FileName_DAPI_status"] = sampled_df["Image_FileName_DAPI"].apply( + check_and_copy_file +) +sampled_df["Image_FileName_GFP_status"] = sampled_df["Image_FileName_GFP"].apply( + check_and_copy_file +) +sampled_df["Image_FileName_RFP_status"] = sampled_df["Image_FileName_RFP"].apply( + check_and_copy_file +) + +sampled_df + +# show the results using a mask on the dataframe for status +print( + sampled_df[ + [ + "Image_FileName_DAPI_status", + "Image_FileName_GFP_status", + "Image_FileName_RFP_status", + ] + ] +) diff --git a/tests/data/cytotable/NF1_cellpainting_data_shrunken/create_mask_data.py b/tests/data/cytotable/NF1_cellpainting_data_shrunken/create_mask_data.py new file mode 100644 index 0000000..d360508 --- /dev/null +++ b/tests/data/cytotable/NF1_cellpainting_data_shrunken/create_mask_data.py @@ -0,0 +1,51 @@ +""" +Creates image masks for images in +coSMicQC/tests/data/cytotable/NF1_cellpainting_data (Plate 2) + +Note: expects Docker to be installed as a CLI on the system. + +This file may be processed using the following command from the root +of the project repository: +`poetry run python \ +tests/data/cytotable/NF1_cellpainting_data_shrunken/create_mask_data.py` +""" + +import os +import pathlib +import subprocess + +# create a dir for segmentation masks +pathlib.Path("tests/data/cytotable/NF1_cellpainting_data_shrunken/Plate_2_masks").mkdir( + exist_ok=True +) + +# define docker command for CellProfiler use with provided pipeline file +command = [ + "docker", + "run", + "--platform", + "linux/amd64", + "--rm", + "-v", + f"{os.getcwd()}/tests/data/cytotable/NF1_cellpainting_data_shrunken:/app", + "cellprofiler/cellprofiler:4.2.4", + "cellprofiler", + "-c", + "-r", + "-p", + "/app/NF1_plate2_export_masks.cppipe", + "-o", + "/app/Plate_2_masks", + "-i", + "/app/Plate_2_images", +] + +# Run the command and show output +try: + result = subprocess.run(command, check=True, text=True, capture_output=True) + print("Command Output:\n", result.stdout) + print("Command Error:\n", result.stderr) +except subprocess.CalledProcessError as e: + print("Error:", e) + print("Command Output:\n", e.stdout) + print("Command Error:\n", e.stderr) diff --git a/tests/data/cytotable/nuclear_speckles/shrink_source_data.py b/tests/data/cytotable/nuclear_speckles/shrink_source_data.py new file mode 100644 index 0000000..210843f --- /dev/null +++ b/tests/data/cytotable/nuclear_speckles/shrink_source_data.py @@ -0,0 +1,31 @@ +""" +Module to shrink source data for testing. + +Original source of data (processing): +https://github.com/WayScience/nuclear_speckle_image_profiling +""" + +import os + +import pandas as pd + +# note: we assume the dataset has been manually added to the +# directory containing this module. +filename = f"{os.path.dirname(__file__)}/slide1_converted.parquet" + +# read the data from parquet, sample a fraction of the data +df = pd.read_parquet(filename) + +# filter to only those data which include slide1_A1_M10_CH0_Z09_illumcorrect +df = df[ + ( + df["Image_FileName_A647"].str.contains( + img_str := "slide1_A1_M10_CH0_Z09_illumcorrect" + ) + ) + | (df["Image_FileName_DAPI"].str.contains(img_str)) + | (df["Image_FileName_GOLD"].str.contains(img_str)) +] + +# export to a new file +df.to_parquet(f"{os.path.dirname(__file__)}/test_slide1_converted.parquet") diff --git a/tests/test_frame.py b/tests/test_frame.py new file mode 100644 index 0000000..332089c --- /dev/null +++ b/tests/test_frame.py @@ -0,0 +1,193 @@ +""" +Tests cosmicqc CytoDataFrame module +""" + +import pathlib + +import cosmicqc +import pandas as pd +import plotly +import plotly.colors as pc +import pytest +from pyarrow import parquet + +from cytodataframe.frame import CytoDataFrame +from tests.utils import cytodataframe_image_display_contains_green_pixels + + +def test_cytodataframe_input( + tmp_path: pathlib.Path, + basic_outlier_dataframe: pd.DataFrame, + basic_outlier_csv: str, + basic_outlier_csv_gz: str, + basic_outlier_tsv: str, + basic_outlier_parquet: str, +): + # Tests CytoDataFrame with pd.DataFrame input. + sc_df = CytoDataFrame(data=basic_outlier_dataframe) + + # test that we ingested the data properly + assert sc_df._custom_attrs["data_source"] == "pandas.DataFrame" + assert sc_df.equals(basic_outlier_dataframe) + + # test export + basic_outlier_dataframe.to_parquet( + control_path := f"{tmp_path}/df_input_example.parquet" + ) + sc_df.export(test_path := f"{tmp_path}/df_input_example1.parquet") + + assert parquet.read_table(control_path).equals(parquet.read_table(test_path)) + + # Tests CytoDataFrame with pd.Series input. + sc_df = CytoDataFrame(data=basic_outlier_dataframe.loc[0]) + + # test that we ingested the data properly + assert sc_df._custom_attrs["data_source"] == "pandas.Series" + assert sc_df.equals(pd.DataFrame(basic_outlier_dataframe.loc[0])) + + # Tests CytoDataFrame with CSV input. + sc_df = CytoDataFrame(data=basic_outlier_csv) + expected_df = pd.read_csv(basic_outlier_csv) + + # test that we ingested the data properly + assert sc_df._custom_attrs["data_source"] == str(basic_outlier_csv) + assert sc_df.equals(expected_df) + + # test export + sc_df.export(test_path := f"{tmp_path}/df_input_example.csv", index=False) + + pd.testing.assert_frame_equal(expected_df, pd.read_csv(test_path)) + + # Tests CytoDataFrame with CSV input. + sc_df = CytoDataFrame(data=basic_outlier_csv_gz) + expected_df = pd.read_csv(basic_outlier_csv_gz) + + # test that we ingested the data properly + assert sc_df._custom_attrs["data_source"] == str(basic_outlier_csv_gz) + assert sc_df.equals(expected_df) + + # test export + sc_df.export(test_path := f"{tmp_path}/df_input_example.csv.gz", index=False) + + pd.testing.assert_frame_equal( + expected_df, pd.read_csv(test_path, compression="gzip") + ) + + # Tests CytoDataFrame with TSV input. + sc_df = CytoDataFrame(data=basic_outlier_tsv) + expected_df = pd.read_csv(basic_outlier_tsv, delimiter="\t") + + # test that we ingested the data properly + assert sc_df._custom_attrs["data_source"] == str(basic_outlier_tsv) + assert sc_df.equals(expected_df) + + # test export + sc_df.export(test_path := f"{tmp_path}/df_input_example.tsv", index=False) + + pd.testing.assert_frame_equal(expected_df, pd.read_csv(test_path, sep="\t")) + + # Tests CytoDataFrame with parquet input. + sc_df = CytoDataFrame(data=basic_outlier_parquet) + expected_df = pd.read_parquet(basic_outlier_parquet) + + # test that we ingested the data properly + assert sc_df._custom_attrs["data_source"] == str(basic_outlier_parquet) + assert sc_df.equals(expected_df) + + # test export + sc_df.export(test_path := f"{tmp_path}/df_input_example2.parquet") + + assert parquet.read_table(basic_outlier_parquet).equals( + parquet.read_table(test_path) + ) + + # test CytoDataFrame with CytoDataFrame input + copy_sc_df = CytoDataFrame(data=sc_df) + + pd.testing.assert_frame_equal(copy_sc_df, sc_df) + + +def test_show_report(cytotable_CFReT_data_df: pd.DataFrame): + """ + Used for testing show report capabilities + """ + + df = cosmicqc.analyze.label_outliers( + df=cytotable_CFReT_data_df, + include_threshold_scores=True, + ) + + figures = df.show_report(auto_open=False) + + expected_number_figures = 3 + assert len(figures) == expected_number_figures + assert ( + next(iter({type(figure) for figure in figures})) + == plotly.graph_objs._figure.Figure + ) + + df.show_report( + report_path=(report_path := pathlib.Path("cosmicqc_example_report.html")), + auto_open=False, + ) + + assert report_path.is_file() + + +def test_repr_html( + cytotable_NF1_data_parquet_shrunken: str, + cytotable_nuclear_speckles_data_parquet: str, +): + """ + Tests how images are rendered through customized repr_html in CytoDataFrame. + """ + + # Ensure there's at least one greenish pixel in the image + assert cytodataframe_image_display_contains_green_pixels( + frame=CytoDataFrame( + data=cytotable_NF1_data_parquet_shrunken, + data_context_dir=f"{pathlib.Path(cytotable_NF1_data_parquet_shrunken).parent}/Plate_2_images", + data_mask_context_dir=f"{pathlib.Path(cytotable_NF1_data_parquet_shrunken).parent}/Plate_2_masks", + ), + image_cols=["Image_FileName_DAPI", "Image_FileName_GFP", "Image_FileName_RFP"], + ), "The NF1 images do not contain green outlines." + assert cytodataframe_image_display_contains_green_pixels( + frame=CytoDataFrame( + data=cytotable_nuclear_speckles_data_parquet, + data_context_dir=f"{pathlib.Path(cytotable_nuclear_speckles_data_parquet).parent}/images", + data_mask_context_dir=f"{pathlib.Path(cytotable_nuclear_speckles_data_parquet).parent}/masks", + ), + image_cols=[ + "Image_FileName_A647", + "Image_FileName_DAPI", + "Image_FileName_GOLD", + ], + ), "The nuclear speckles images do not contain green outlines." + + +@pytest.mark.generate_report_image +def fixture_generate_show_report_html_output(cytotable_CFReT_data_df: pd.DataFrame): + """ + Used for generating report output for use with other tests. + """ + + # create outliers dataframe + df = cosmicqc.analyze.label_outliers( + df=cytotable_CFReT_data_df, + include_threshold_scores=True, + ) + + # show a report + df.show_report( + report_path=( + report_path := pathlib.Path(__file__).parent + / "data" + / "coSMicQC" + / "show_report" + / "cosmicqc_example_report.html" + ), + color_palette=pc.qualitative.Dark24[0:2], + auto_open=False, + ) + + return report_path diff --git a/tests/test_image.py b/tests/test_image.py new file mode 100644 index 0000000..349eae8 --- /dev/null +++ b/tests/test_image.py @@ -0,0 +1,53 @@ +""" +Tests cosmicqc image module +""" + +from PIL import Image + +from cytodataframe.image import adjust_image_brightness, is_image_too_dark + + +def test_is_image_too_dark_with_dark_image(fixture_dark_image: Image): + assert is_image_too_dark(fixture_dark_image, pixel_brightness_threshold=10.0) + + +def test_is_image_too_dark_with_bright_image(fixture_bright_image: Image): + assert not is_image_too_dark(fixture_bright_image, pixel_brightness_threshold=10.0) + + +def test_is_image_too_dark_with_mid_brightness_image( + fixture_mid_brightness_image: Image, +): + assert not is_image_too_dark( + fixture_mid_brightness_image, pixel_brightness_threshold=10.0 + ) + + +def test_adjust_image_brightness_with_dark_image(fixture_dark_image: Image): + adjusted_image = adjust_image_brightness(fixture_dark_image) + # we expect that image to be too dark (it's all dark, so there's no adjustments) + assert is_image_too_dark(adjusted_image, pixel_brightness_threshold=10.0) + + +def test_adjust_image_brightness_with_bright_image(fixture_bright_image: Image): + adjusted_image = adjust_image_brightness(fixture_bright_image) + # Since the image was already bright, it should remain bright + assert not is_image_too_dark(adjusted_image, pixel_brightness_threshold=10.0) + + +def test_adjust_image_brightness_with_mid_brightness_image( + fixture_mid_brightness_image: Image, +): + adjusted_image = adjust_image_brightness(fixture_mid_brightness_image) + # The image should still not be too dark after adjustment + assert not is_image_too_dark(adjusted_image, pixel_brightness_threshold=10.0) + + +def test_adjust_nuclear_speckle_image_brightness( + fixture_nuclear_speckle_example_image: Image, +): + assert is_image_too_dark(fixture_nuclear_speckle_example_image) + assert not is_image_too_dark( + adjust_image_brightness(fixture_nuclear_speckle_example_image), + pixel_brightness_threshold=3.0, + ) diff --git a/tests/utils.py b/tests/utils.py new file mode 100644 index 0000000..a1f7887 --- /dev/null +++ b/tests/utils.py @@ -0,0 +1,77 @@ +""" +Utilities for running pytest tests in CytoDataFrame +""" + +import base64 +import re +from io import BytesIO +from typing import List + +import numpy as np +from PIL import Image + +from cytodataframe import CytoDataFrame + + +def cytodataframe_image_display_contains_green_pixels( + frame: CytoDataFrame, image_cols: List[str] +) -> bool: + """ + Determines if relevant image from the CytoDataFrame HTML + contains green pixels. + + Args: + frame (CytoDataFrame): + A custom `CytoDataFrame` object which includes image paths. + image_cols (List[str]): + A list of column names in the `CytoDataFrame` + that contain images paths. + + Returns: + bool: + True if any greenish pixels are found in relevant + image within the HTML, otherwise False. + + Raises: + ValueError: + If no base64-encoded image data is found in the + HTML representation of the given columns. + """ + + # gather HTML output from CytoDataFrame + html_output = frame[image_cols]._repr_html_() + + # Extract all base64 image data from the HTML + matches = re.findall(r'data:image/png;base64,([^"]+)', html_output) + + # check that we have matches + if not len(matches) > 0: + raise ValueError("No base64 image data found in HTML") + + # Select the third base64 image data (indexing starts from 0) + # (we expect the first ones to not contain outlines based on the + # html and example data) + base64_data = matches[2] + + # Decode the base64 image data + image_data = base64.b64decode(base64_data) + image = Image.open(BytesIO(image_data)).convert("RGB") + + # Check for the presence of green pixels in the image + image_array = np.array(image) + + # gather color channels from image + red_channel = image_array[:, :, 0] + green_channel = image_array[:, :, 1] + blue_channel = image_array[:, :, 2] + + # Define a threshold to identify greenish pixels + green_threshold = 50 + green_pixels = ( + (green_channel > green_threshold) + & (green_channel > red_channel) + & (green_channel > blue_channel) + ) + + # return true/false if there's at least one greenish pixel in the image + return np.any(green_pixels)