forked from eghummel/BD-Code-Development
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBD code v4.2.py
258 lines (214 loc) · 9.05 KB
/
BD code v4.2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
import scipy.integrate
from scipy.signal import find_peaks
from numpy import trapz
from scipy.integrate import cumtrapz
# SETUP VARIABLES - USER INPUTS
BD = 3
atype = 'p' # m = mantle area, p = projected area
tiptype = 'c' # c = cone, p = parabolic, b = blunt
# paste the filepath to the folder where the bd data is stored
binFilepath = Path("H:\My Drive\CEE 5904 - Project & Report\FRF Data/test data")
# write the bin file number you want to analyze (do not include 'bLog' or '.bin')
fileNum = '02F4'
outputFile = 'data.xlsx' # this currently doesn't do anything, but eventually all data will be printed out into an excel sheet
outputPath = Path("H:\My Drive\CEE 5904 - Project & Report\FRF Data/test data") # Path for new files
def accPick(dg):
# each of the following are the same; if an accelerometer breaks on a BD, can edit that section
# the 200g accelerometer is ignored in all cases
if BD == 3:
maxAcc = dg["250g (g)"].max()
global acc
global accName
if maxAcc < 5:
if dg["2g (g)"].max() < 1.8: # does an extra check for the 2g because of noise
acc = dg["2g (g)"]
accName = "2g (g)"
else:
acc = dg["18g (g)"]
accName = "18g (g)"
elif maxAcc < 18:
acc = dg["18g (g)"]
accName = "18g (g)"
elif maxAcc < 50:
acc = dg["50g (g)"]
accName = "50g (g)"
else:
acc = dg["250g (g)"]
accName = "250g (g)"
"""def integration(d):
v = scipy.integrate.cumtrapz(acc, x=d["Time (s)"]) # solves for velocity
v = v
maxv = v.max()
depth = scipy.integrate.cumtrapz(v, x=d["Time (s)"]) # solves for penetration depth
depth = depth
maxd = depth.max()
d.insert("Velocity", v)
d.insert("Penetration Depth", depth)"""
# READ BD DATA IN
data_array = [] # creates an empty array for us to fill with bd data
fileName = 'bLog'+fileNum+".bin"
# print(fileName)
newPath = binFilepath / fileName
print(newPath)
file = open(newPath, 'rb') # read file
element = file.read(3) # create a byte list with each element having 3 bytes
while element:
# Convert to signed integer before adding to data array
iVAl = int.from_bytes(element, byteorder='big', signed=True)
data_array.append(iVAl) # adds the reshaped data from the bd file to the data frame
element = file.read(3)
np_array = np.array(data_array) # create numpy array from the list
np_array = np.reshape(np_array, (-1, 10)) # convert the 1d array to 2d array with 10 cols
print(np_array.shape)
# print(np_array)
df = pd.DataFrame(np_array) # Creates a Dataframe in pandas from the bd data
df.columns = ['Count', 'no clue', 'g2g', 'g18g', 'g50g', 'ppm', 'g200g', 'gX55g', 'gY55g', 'g250g'] # names columns
# print(dfCal)
# APPLY CALIBRATION FACTORS
if BD == 3: # calibration factors from July 2019
g2g = (df['g2g']-34426.5)/1615925.8 # accelerometers are in g
g18g = (df['g18g']+12322.1)/163530.7
g50g = (df['g50g']-237384.9)/63651 - 0.1120
ppm = ((df['ppm']+62496.7)/20583.0) * 6.89475729 # converts to kPa
g200g = ((df['g200g'] -248943.7)/39009.4)+0.5518
gX55g = (df['gX55g']-59093.7)/66674.3
gY55g = (df['gY55g']-140224.6)/66674.3
g250g = (df['g250g']-40536.1)/13631.6
if BD == 2: # calibration factors from Aug 26, 2021
g2g = (df['g2g']+31384.7)/1624987.2-0.035 # accelerometers are in g
g18g = (df['g18g']-26631.0)/159945.4
g50g = (df['g50g']+92987.0)/63783.5
ppm = ((df['ppm']-35170.6)/12922.9) * 6.89475729 # converts to kPa
g200g = (df['g200g']-16264.8)/26042.8 -0.277
gX55g = (df['gX55g']+89890.3)/63897.1
gY55g = (df['gY55g']+14993.0)/64118.0
g250g = (df['g250g']+17362.1)/13533.5+0.0656
if BD == 1: # calibration factors from July 2020
g2g = (df['g2g']+277743.2)/1637299.6 # accelerometers are in g
g18g = (df['g18g']-3755.9)/159932.2
g50g = (df['g50g']+92817.6)/63237.1
ppm = ((df['ppm']-33154.0)/14763.5) * 6.89475729 # this is kPa
g200g = (df['g200g'] -1155309.9)/28368.5 - 1.464
gX55g = (df['gX55g'] +97138.4)/62023.7
gY55g = (df['gY55g']-9921.7)/62669.2
g250g = (df['g250g']+59211.3)/13276.9
time = (df['Count']-df['Count'].iloc[0]+1)/2000 # gives time in s
dfCalg = pd.DataFrame([time, g2g, g18g, g50g, g200g, g250g, gX55g, gY55g, ppm]) # copies the data frame; this version will be edited with calibration factors
dfCalg = dfCalg.T
dfCalg.columns = ['Time (s)', '2g (g)', '18g (g)', '50g (g)', '200g (g)', '250g (g)', 'X55g (g)', 'Y55g (g)', 'Pore Pressure (kPa)'] # names columns
#print(dfCalg)
dfCal = dfCalg
dfCal.columns = ['Time (s)', '2g (m/s^2)', '18g (m/s^2)', '50g (m/s^2)', '200g (m/s^2)', '250g (m/s^2)', 'X55g (m/s^2)', 'Y55g (m/s^2)', 'Pore Pressure (kPa)'] # names columns
dfCal['2g (m/s^2)'] = dfCal['2g (m/s^2)'] * 9.80665
dfCal['18g (m/s^2)'] = dfCal['18g (m/s^2)'] * 9.80665
dfCal['50g (m/s^2)'] = dfCal['50g (m/s^2)'] * 9.80665
dfCal['200g (m/s^2)'] = dfCal['200g (m/s^2)'] * 9.80665
dfCal['250g (m/s^2)'] = dfCal['250g (m/s^2)'] * 9.80665
dfCal['X55g (m/s^2)'] = dfCal['X55g (m/s^2)'] * 9.80665
dfCal['Y55g (m/s^2)'] = dfCal['Y55g (m/s^2)'] * 9.80665
print(dfCal)
'''
# GENERATE PLOTS
fig, (ax1, ax2) = plt.subplots(2)
# plot of all deceleration data
ax1.plot(time, g2g, label="2g")
ax1.plot(time, g18g, label="18g")
ax1.plot(time, g50g, label="50g")
#plt.plot(time, ppm)
ax1.plot(time, g200g, label="200g")
#plt.plot(time, gX55g, label="2g")
#plt.plot(time, gY55g, label="2g")
ax1.plot(time, g250g, label="250g")
ax1.legend()
ax1.set(ylabel="Deceleration (g)")
ax1.set(xlabel="Time (s)")
# Plot pore pressure data
ax2.plot(time, ppm, label="Pore Pressure")
ax2.set(ylabel="Pore Pressure (kPa)")
ax2.set(xlabel="Time (s)")
plt.show()
'''
#AUTOMATIC PEAK FINDING
x = np.array(g250g) # what accelerometer to get the peaks from
peaks, _ = find_peaks(x, height = 5, distance=10000) # finds the largest peaks more than 5g spaced at least 10000 counts apart
plt.plot(x)
plt.plot(peaks, x[peaks], "x")
#plt.show()
# CREATION OF INDIVIDUAL DROP FILES
peaksArray = np.array(peaks) # prints a list of the count where the peaks occur
print(peaksArray)
q = (peaksArray.shape) #gives number of peaks
nDrops = int(q[0]) #number of drops in the file
print(nDrops)
a = 0
n = 1
# MAKE INDIVIDUAL DATAFRAMES FOR EACH DROP AND PLOT DECELERATION VS TIME
while n <= nDrops :
b = int(peaksArray[a]) # count at the ath drop
dropstart = b - 100 # offset in counts before impact to include in sliced df
dropend = b + 100 # offset in counts after impact to include in sliced df
if n == 1 :
#drop1 = dfCal[dropstart:dropend] #start and end points of the drop in m/s^2
drop1g = dfCalg[dropstart:dropend] #start and end points of the drop in g
#drop1 = pd.DataFrame(drop1) # makes dataframe including all data within the start and end points of the drop
dg = drop1g # chooses what accelerometer to use based on the max g
#d = drop1
accPick(dg) # chooses what accelerometer to use
v = scipy.integrate.cumtrapz(acc, x=dg["Time (s)"]) # solves for velocity
v = np.array(v)
#v = v.T
print(v.shape)
print(v)
#integration(d)
drop1g.plot(x="Time (s)", y=accName, ylabel="Deceleration (m/s^2)")
plt.show()
print(drop1g)
""" if n == 2 :
drop2 = dfCalMs[dropstart:dropend]
drop2 = pd.DataFrame(drop2) # makes dataframe including all data within the start and end points of the drop
d = drop2
accPick(d)
drop2.plot(x="Time (s)", y=accName, ylabel="Deceleration (g)")
plt.show()
#print(drop2)
if n == 3 :
drop3 = dfCalMs[dropstart:dropend]
drop3 = pd.DataFrame(drop3) # makes dataframe including all data within the start and end points of the drop
d = drop3
accPick(d)
drop3.plot(x="Time (s)", y=accName, ylabel="Deceleration (g)")
plt.show()
#print(drop3)
if n == 4 :
drop4 = dfCalMs[dropstart:dropend]
drop4 = pd.DataFrame(drop4) # makes dataframe including all data within the start and end points of the drop
d = drop4
accPick(d)
drop4.plot(x="Time (s)", y=accName, ylabel="Deceleration (g)")
plt.show()
#print(drop4)
if n == 5 :
drop5 = dfCalMs[dropstart:dropend]
drop5 = pd.DataFrame(drop5) # makes dataframe including all data within the start and end points of the drop
d = drop5
accPick(d)
drop5.plot(x="Time (s)", y=accName, ylabel="Deceleration (g)")
plt.show()
#print(drop5)
if n == 6 :
drop6 = dfCalMs[dropstart:dropend]
drop6 = pd.DataFrame(drop6) # makes dataframe including all data within the start and end points of the drop
d = drop6
accPick(d)
drop6.plot(x="Time (s)", y=accName, ylabel="Deceleration (g)")
plt.show()
#print(drop6)
"""
n = n + 1
a = a + 1
#outputName = fileNum + " Drop " + str(n)
#print(outputName)