diff --git a/hvcc/core/hv2ir/HIrRFFT.py b/hvcc/core/hv2ir/HIrRFFT.py new file mode 100644 index 00000000..be8b961e --- /dev/null +++ b/hvcc/core/hv2ir/HIrRFFT.py @@ -0,0 +1,48 @@ +# Copyright (C) 2014-2018 Enzien Audio, Ltd. +# Copyright (C) 2023 Wasted Audio +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see . + +from typing import Dict, Optional + +from .HeavyIrObject import HeavyIrObject +from .HeavyGraph import HeavyGraph + + +class HIrRFFT(HeavyIrObject): + """ __rfft~f + """ + + def __init__( + self, + obj_type: str, + args: Optional[Dict] = None, + graph: Optional[HeavyGraph] = None, + annotations: Optional[Dict] = None + ) -> None: + assert obj_type in {"__rfft~f", "__rifft~f"} + super().__init__(obj_type, args=args, graph=graph, annotations=annotations) + + def reduce(self) -> Optional[tuple]: + if self.graph is not None: + table_obj = self.graph.resolve_object_for_name( + self.args["table"], + ["table", "__table"]) + if table_obj is not None: + self.args["table_id"] = table_obj.id + return ({self}, []) + else: + self.add_error(f"Cannot find table named \"{self.args['table']}\" for object {self}.") + + return None diff --git a/hvcc/core/hv2ir/HeavyGraph.py b/hvcc/core/hv2ir/HeavyGraph.py index 3093998f..8161c774 100644 --- a/hvcc/core/hv2ir/HeavyGraph.py +++ b/hvcc/core/hv2ir/HeavyGraph.py @@ -294,7 +294,6 @@ def resolve_object_for_name( from this graph. Returns None if no objects are available. This is a convenience method. """ - objs = self.resolve_objects_for_name(name, obj_types, local_graph) return objs[0] if len(objs) > 0 else None diff --git a/hvcc/core/hv2ir/HeavyParser.py b/hvcc/core/hv2ir/HeavyParser.py index 180de62d..9bea4a61 100644 --- a/hvcc/core/hv2ir/HeavyParser.py +++ b/hvcc/core/hv2ir/HeavyParser.py @@ -25,6 +25,7 @@ from .HIrLorenz import HIrLorenz from .HIrOutlet import HIrOutlet from .HIrPack import HIrPack +from .HIrRFFT import HIrRFFT from .HIrSwitchcase import HIrSwitchcase from .HIrTabhead import HIrTabhead from .HIrTabread import HIrTabread @@ -306,6 +307,8 @@ def reduce(self) -> tuple: "__tabwrite~f": HIrTabwrite, "__tabwrite_stoppable~f": HIrTabwrite, "__tabwrite": HIrTabwrite, + "__rfft~f": HIrRFFT, + "__rifft~f": HIrRFFT, "receive": HLangReceive, "send": HLangSend, "__switchcase": HIrSwitchcase, diff --git a/hvcc/core/json/heavy.ir.json b/hvcc/core/json/heavy.ir.json index ff36a44d..5179a10e 100644 --- a/hvcc/core/json/heavy.ir.json +++ b/hvcc/core/json/heavy.ir.json @@ -2223,6 +2223,60 @@ "-->" ] }, + "__rfft~f": { + "inlets": [ + "~f>", + "-->", + "-->" + ], + "ir": { + "control": false, + "signal": true, + "init": true + }, + "outlets": [ + "~f>", + "~f>" + ], + "args": [{ + "name": "table", + "value_type": "string", + "description": "", + "default": "", + "required": true + }], + "perf": { + "avx": 0, + "sse": 0 + } + }, + "__rifft~f": { + "inlets": [ + "~f>", + "~f>", + "-->", + "-->" + ], + "ir": { + "control": false, + "signal": true, + "init": true + }, + "outlets": [ + "~f>" + ], + "args": [{ + "name": "table", + "value_type": "string", + "description": "", + "default": "", + "required": true + }], + "perf": { + "avx": 0, + "sse": 0 + } + }, "__rpole~f": { "inlets": [ "~f>", diff --git a/hvcc/generators/ir2c/SignalRFFT.py b/hvcc/generators/ir2c/SignalRFFT.py new file mode 100644 index 00000000..1d1514be --- /dev/null +++ b/hvcc/generators/ir2c/SignalRFFT.py @@ -0,0 +1,73 @@ +# Copyright (C) 2014-2018 Enzien Audio, Ltd. +# Copyright (C) 2023 Wasted Audio +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see . + +from typing import Dict, List + +from .HeavyObject import HeavyObject + + +class SignalRFFT(HeavyObject): + + c_struct = "SignalRFFT" + preamble = "sRFFT" + + @classmethod + def get_C_header_set(cls) -> set: + return {"HvSignalRFFT.h"} + + @classmethod + def get_C_file_set(cls) -> set: + return {"HvSignalRFFT.h", "HvSignalRFFT.c", "pffft.h", "pffft.c"} + + @classmethod + def get_C_init(cls, obj_type: str, obj_id: int, args: Dict) -> List[str]: + return [ + "sRFFT_init(&sRFFT_{0}, &hTable_{1}, {2});".format( + obj_id, + args["table_id"], + 64) + ] + + @classmethod + def get_C_onMessage(cls, obj_type: str, obj_id: int, inlet_index: int, args: Dict) -> List[str]: + return [ + "sRFFT_onMessage(_c, &Context(_c)->sRFFT_{0}, {1}, m, NULL);".format( + obj_id, + inlet_index) + ] + + @classmethod + def get_C_process(cls, process_dict: Dict, obj_type: str, obj_id: int, args: Dict) -> List[str]: + if obj_type == "__rfft~f": + return [ + "__hv_rfft_f(&sRFFT_{0}, VIf({1}), VOf({2}), VOf({3}));".format( + process_dict["id"], + cls._c_buffer(process_dict["inputBuffers"][0]), + cls._c_buffer(process_dict["outputBuffers"][0]), + cls._c_buffer(process_dict["outputBuffers"][1]) + ) + ] + elif obj_type == "__rifft~f": + return [ + "__hv_rifft_f(&sRFFT_{0}, VIf({1}), VIf({2}), VOf({3}));".format( + process_dict["id"], + cls._c_buffer(process_dict["inputBuffers"][0]), + cls._c_buffer(process_dict["inputBuffers"][1]), + cls._c_buffer(process_dict["outputBuffers"][0]) + ) + ] + else: + raise Exception diff --git a/hvcc/generators/ir2c/ir2c.py b/hvcc/generators/ir2c/ir2c.py index c822c007..817fad42 100644 --- a/hvcc/generators/ir2c/ir2c.py +++ b/hvcc/generators/ir2c/ir2c.py @@ -57,6 +57,7 @@ from hvcc.generators.ir2c.SignalLorenz import SignalLorenz from hvcc.generators.ir2c.SignalMath import SignalMath from hvcc.generators.ir2c.SignalPhasor import SignalPhasor +from hvcc.generators.ir2c.SignalRFFT import SignalRFFT from hvcc.generators.ir2c.SignalRPole import SignalRPole from hvcc.generators.ir2c.SignalSample import SignalSample from hvcc.generators.ir2c.SignalSamphold import SignalSamphold @@ -98,6 +99,8 @@ class ir2c: "__tabwrite_stoppable~f": SignalTabwrite, "__phasor~f": SignalPhasor, "__phasor_k~f": SignalPhasor, + "__rfft~f": SignalRFFT, + "__rifft~f": SignalRFFT, "__sample~f": SignalSample, "__samphold~f": SignalSamphold, "__slice": ControlSlice, diff --git a/hvcc/generators/ir2c/static/HvSignalRFFT.c b/hvcc/generators/ir2c/static/HvSignalRFFT.c new file mode 100644 index 00000000..707e5350 --- /dev/null +++ b/hvcc/generators/ir2c/static/HvSignalRFFT.c @@ -0,0 +1,127 @@ +/** + * Copyright (c) 2023 Wasted Audio + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH + * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY + * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, + * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM + * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR + * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR + * PERFORMANCE OF THIS SOFTWARE. + */ + +#include "HvSignalRFFT.h" +#include "pffft.h" + +hv_size_t sRFFT_init(SignalRFFT *o, struct HvTable *table, const int size) { + o->table = table; + o->setup = pffft_new_setup(size, PFFFT_REAL); + hv_size_t numBytes = hTable_init(&o->inputs, size); + return numBytes; +} + +void sRFFT_free(SignalRFFT *o) { + o->table = NULL; + hTable_free(&o->inputs); + pffft_destroy_setup(o->setup); +} + +void sRFFT_onMessage(HeavyContextInterface *_c, SignalRFFT *o, int letIndex, + const HvMessage *m, void *sendMessage) { + switch (letIndex) { + case 1: { + if (msg_isHashLike(m,0)) { + HvTable *table = hv_table_get(_c, msg_getHash(m,0)); + if (table != NULL) { + o->table = table; + if (hTable_getSize(&o->inputs) != hTable_getSize(table)) { + hTable_resize(&o->inputs, + (hv_uint32_t) hv_min_ui(hTable_getSize(&o->inputs), hTable_getSize(table))); + } + } + } + break; + } + case 2: { + if (msg_isFloat(m,0)) { + // rfft size should never exceed the coefficient table size + hTable_resize(&o->inputs, (hv_uint32_t) msg_getFloat(m,0)); + } + break; + } + default: return; + } +} + + +static inline int wrap(const int i, const int n) { + if (i < 0) return (i+n); + if (i >= n) return (i-n); + return i; +} + + +void __hv_rfft_f(SignalRFFT *o, hv_bInf_t bIn, hv_bOutf_t bOut0, hv_bOutf_t bOut1) { + hv_assert(o->table != NULL); + float *const work = hTable_getBuffer(o->table); + hv_assert(work != NULL); + const int n = hTable_getSize(o->table); // length fir filter + hv_assert((n&HV_N_SIMD_MASK) == 0); // n is a multiple of HV_N_SIMD + + float *const inputs = hTable_getBuffer(&o->inputs); + hv_assert(inputs != NULL); + const int m = hTable_getSize(&o->inputs); // length of input buffer. + hv_assert(m >= n); + const int h_orig = hTable_getHead(&o->inputs); + + // float *const bOut = (float *)(hv_alloca(2*n*sizeof(float))); + float *const bOut = (float *)(hv_alloca(sizeof(bIn))); + + pffft_transform_ordered(o->setup, &bIn, bOut, work, PFFFT_FORWARD); + + // uninterleave result into the output buffers + for (int j = 0; j < n; ++j) { + bOut0[n+j] = bOut[0+2*j]; + bOut1[n+j] = bOut[1+2*j]; + } + + __hv_store_f(inputs+h_orig, bIn); // store the new input to the inputs buffer + hTable_setHead(&o->inputs, wrap(h_orig+HV_N_SIMD, m)); +} + + +void __hv_rifft_f(SignalRFFT *o, hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut) { + hv_assert(o->table != NULL); + float *const work = hTable_getBuffer(o->table); + hv_assert(work != NULL); + const int n = hTable_getSize(o->table); // length fir filter + hv_assert((n&HV_N_SIMD_MASK) == 0); // n is a multiple of HV_N_SIMD + + float *const inputs = hTable_getBuffer(&o->inputs); + hv_assert(inputs != NULL); + const int m = hTable_getSize(&o->inputs); // length of input buffer. + hv_assert(m >= n); + const int h_orig = hTable_getHead(&o->inputs); + + float *bIn00 = &bIn0; + float *bIn10 = &bIn1; + // float *const bIn = (float *)(hv_alloca(2*n*sizeof(float))); + float *const bIn = (float *)(hv_alloca(sizeof(bOut))); + + // interleave the input buffers into the transform buffer + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < n; ++j) { + bIn[0+2*j] = bIn00[n+j]; + bIn[1+2*j] = bIn10[n+j]; + } + } + + pffft_transform_ordered(o->setup, bIn, bOut, work, PFFFT_BACKWARD); + + // __hv_store_f(inputs+h_orig, bIn); // store the new input to the inputs buffer + hTable_setHead(&o->inputs, wrap(h_orig+HV_N_SIMD, m)); +} diff --git a/hvcc/generators/ir2c/static/HvSignalRFFT.h b/hvcc/generators/ir2c/static/HvSignalRFFT.h new file mode 100644 index 00000000..dd681410 --- /dev/null +++ b/hvcc/generators/ir2c/static/HvSignalRFFT.h @@ -0,0 +1,49 @@ +/** + * Copyright (c) 2023 Wasted Audio + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH + * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY + * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, + * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM + * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR + * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR + * PERFORMANCE OF THIS SOFTWARE. + */ + +#ifndef _SIGNAL_RFFT_H_ +#define _SIGNAL_RFFT_H_ + +#include "HvHeavyInternal.h" +#include "pffft.h" + +#ifdef __cplusplus +extern "C" { +#endif + + +typedef struct SignalRFFT { + struct HvTable *table; + struct HvTable inputs; + struct PFFFT_Setup *setup; +} SignalRFFT; + +hv_size_t sRFFT_init(SignalRFFT *o, struct HvTable *table, const int size); + +void sRFFT_free(SignalRFFT *o); + +void sRFFT_onMessage(HeavyContextInterface *_c, SignalRFFT *o, int letIndex, + const HvMessage *m, void *sendMessage); + +void __hv_rfft_f(SignalRFFT *o, hv_bInf_t bIn, hv_bOutf_t bOut0, hv_bOutf_t bOut1); + +void __hv_rifft_f(SignalRFFT *o, hv_bInf_t bIn0, hv_bInf_t bIn1, hv_bOutf_t bOut); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // _SIGNAL_RFFT_H_ diff --git a/hvcc/generators/ir2c/static/pffft.c b/hvcc/generators/ir2c/static/pffft.c new file mode 100644 index 00000000..171daee0 --- /dev/null +++ b/hvcc/generators/ir2c/static/pffft.c @@ -0,0 +1,1894 @@ +/* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com ) + + Based on original fortran 77 code from FFTPACKv4 from NETLIB + (http://www.netlib.org/fftpack), authored by Dr Paul Swarztrauber + of NCAR, in 1985. + + As confirmed by the NCAR fftpack software curators, the following + FFTPACKv5 license applies to FFTPACKv4 sources. My changes are + released under the same terms. + + FFTPACK license: + + http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html + + Copyright (c) 2004 the University Corporation for Atmospheric + Research ("UCAR"). All rights reserved. Developed by NCAR's + Computational and Information Systems Laboratory, UCAR, + www.cisl.ucar.edu. + + Redistribution and use of the Software in source and binary forms, + with or without modification, is permitted provided that the + following conditions are met: + + - Neither the names of NCAR's Computational and Information Systems + Laboratory, the University Corporation for Atmospheric Research, + nor the names of its sponsors or contributors may be used to + endorse or promote products derived from this Software without + specific prior written permission. + + - Redistributions of source code must retain the above copyright + notices, this list of conditions, and the disclaimer below. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions, and the disclaimer below in the + documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN + ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE + SOFTWARE. + + + PFFFT : a Pretty Fast FFT. + + This file is largerly based on the original FFTPACK implementation, modified in + order to take advantage of SIMD instructions of modern CPUs. +*/ + +/* + ChangeLog: + - 2011/10/02, version 1: This is the very first release of this file. +*/ + +#include "pffft.h" +#include +#include +#include +#include + +/* detect compiler flavour */ +#if defined(_MSC_VER) +# define COMPILER_MSVC +#elif defined(__GNUC__) +# define COMPILER_GCC +#endif + +#if defined(COMPILER_GCC) +# define ALWAYS_INLINE(return_type) inline return_type __attribute__ ((always_inline)) +# define NEVER_INLINE(return_type) return_type __attribute__ ((noinline)) +# define RESTRICT __restrict +# define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ varname__[size__]; +#elif defined(COMPILER_MSVC) +# define ALWAYS_INLINE(return_type) __forceinline return_type +# define NEVER_INLINE(return_type) __declspec(noinline) return_type +# define RESTRICT __restrict +# define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ *varname__ = (type__*)_alloca(size__ * sizeof(type__)) +#endif + +#ifndef M_PI +#define M_PI 3.14159265358979323846 /* pi */ +#endif + +#ifndef M_SQRT2 +#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */ +#endif + +#define PFFFT_SIMD_DISABLE 1 + + +/* + vector support macros: the rest of the code is independant of + SSE/Altivec/NEON -- adding support for other platforms with 4-element + vectors should be limited to these macros +*/ + + +// define PFFFT_SIMD_DISABLE if you want to use scalar code instead of simd code +//#define PFFFT_SIMD_DISABLE + +/* + Altivec support macros +*/ +#if !defined(PFFFT_SIMD_DISABLE) && (defined(__ppc__) || defined(__ppc64__) || defined(__powerpc__) || defined(__powerpc64__)) +#include +typedef vector float v4sf; +# define SIMD_SZ 4 +# define VZERO() ((vector float) vec_splat_u8(0)) +# define VMUL(a,b) vec_madd(a,b, VZERO()) +# define VADD(a,b) vec_add(a,b) +# define VMADD(a,b,c) vec_madd(a,b,c) +# define VSUB(a,b) vec_sub(a,b) +inline v4sf ld_ps1(const float *p) { v4sf v=vec_lde(0,p); return vec_splat(vec_perm(v, v, vec_lvsl(0, p)), 0); } +# define LD_PS1(p) ld_ps1(&p) +# define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = vec_mergeh(in1, in2); out2 = vec_mergel(in1, in2); out1 = tmp__; } +# define UNINTERLEAVE2(in1, in2, out1, out2) { \ + vector unsigned char vperm1 = (vector unsigned char){0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27}; \ + vector unsigned char vperm2 = (vector unsigned char){4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31}; \ + v4sf tmp__ = vec_perm(in1, in2, vperm1); out2 = vec_perm(in1, in2, vperm2); out1 = tmp__; \ + } +# define VTRANSPOSE4(x0,x1,x2,x3) { \ + v4sf y0 = vec_mergeh(x0, x2); \ + v4sf y1 = vec_mergel(x0, x2); \ + v4sf y2 = vec_mergeh(x1, x3); \ + v4sf y3 = vec_mergel(x1, x3); \ + x0 = vec_mergeh(y0, y2); \ + x1 = vec_mergel(y0, y2); \ + x2 = vec_mergeh(y1, y3); \ + x3 = vec_mergel(y1, y3); \ + } +# define VSWAPHL(a,b) vec_perm(a,b, (vector unsigned char){16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15}) +# define VALIGNED(ptr) ((((long long)(ptr)) & 0xF) == 0) + +/* + SSE1 support macros +*/ +#elif !defined(PFFFT_SIMD_DISABLE) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(i386) || defined(_M_IX86)) + +#include +typedef __m128 v4sf; +# define SIMD_SZ 4 // 4 floats by simd vector -- this is pretty much hardcoded in the preprocess/finalize functions anyway so you will have to work if you want to enable AVX with its 256-bit vectors. +# define VZERO() _mm_setzero_ps() +# define VMUL(a,b) _mm_mul_ps(a,b) +# define VADD(a,b) _mm_add_ps(a,b) +# define VMADD(a,b,c) _mm_add_ps(_mm_mul_ps(a,b), c) +# define VSUB(a,b) _mm_sub_ps(a,b) +# define LD_PS1(p) _mm_set1_ps(p) +# define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_unpacklo_ps(in1, in2); out2 = _mm_unpackhi_ps(in1, in2); out1 = tmp__; } +# define UNINTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(2,0,2,0)); out2 = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(3,1,3,1)); out1 = tmp__; } +# define VTRANSPOSE4(x0,x1,x2,x3) _MM_TRANSPOSE4_PS(x0,x1,x2,x3) +# define VSWAPHL(a,b) _mm_shuffle_ps(b, a, _MM_SHUFFLE(3,2,1,0)) +# define VALIGNED(ptr) ((((long long)(ptr)) & 0xF) == 0) + +/* + ARM NEON support macros +*/ +#elif !defined(PFFFT_SIMD_DISABLE) && (defined(__arm__) || defined(__aarch64__) || defined(__arm64__)) +# include +typedef float32x4_t v4sf; +# define SIMD_SZ 4 +# define VZERO() vdupq_n_f32(0) +# define VMUL(a,b) vmulq_f32(a,b) +# define VADD(a,b) vaddq_f32(a,b) +# define VMADD(a,b,c) vmlaq_f32(c,a,b) +# define VSUB(a,b) vsubq_f32(a,b) +# define LD_PS1(p) vld1q_dup_f32(&(p)) +# define INTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vzipq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; } +# define UNINTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vuzpq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; } +# define VTRANSPOSE4(x0,x1,x2,x3) { \ + float32x4x2_t t0_ = vzipq_f32(x0, x2); \ + float32x4x2_t t1_ = vzipq_f32(x1, x3); \ + float32x4x2_t u0_ = vzipq_f32(t0_.val[0], t1_.val[0]); \ + float32x4x2_t u1_ = vzipq_f32(t0_.val[1], t1_.val[1]); \ + x0 = u0_.val[0]; x1 = u0_.val[1]; x2 = u1_.val[0]; x3 = u1_.val[1]; \ + } +// marginally faster version +//# define VTRANSPOSE4(x0,x1,x2,x3) { asm("vtrn.32 %q0, %q1;\n vtrn.32 %q2,%q3\n vswp %f0,%e2\n vswp %f1,%e3" : "+w"(x0), "+w"(x1), "+w"(x2), "+w"(x3)::); } +# define VSWAPHL(a,b) vcombine_f32(vget_low_f32(b), vget_high_f32(a)) +# define VALIGNED(ptr) ((((long long)(ptr)) & 0x3) == 0) +#else +# if !defined(PFFFT_SIMD_DISABLE) +# warning "building with simd disabled !\n"; +# define PFFFT_SIMD_DISABLE // fallback to scalar code +# endif +#endif + +// fallback mode for situations where SSE/Altivec are not available, use scalar mode instead +#ifdef PFFFT_SIMD_DISABLE +typedef float v4sf; +# define SIMD_SZ 1 +# define VZERO() 0.f +# define VMUL(a,b) ((a)*(b)) +# define VADD(a,b) ((a)+(b)) +# define VMADD(a,b,c) ((a)*(b)+(c)) +# define VSUB(a,b) ((a)-(b)) +# define LD_PS1(p) (p) +# define VALIGNED(ptr) ((((long long)(ptr)) & 0x3) == 0) +#endif + +// shortcuts for complex multiplcations +#define VCPLXMUL(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VSUB(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VADD(ai,tmp); } +#define VCPLXMULCONJ(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VADD(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VSUB(ai,tmp); } +#ifndef SVMUL +// multiply a scalar with a vector +#define SVMUL(f,v) VMUL(LD_PS1(f),v) +#endif + +#if !defined(PFFFT_SIMD_DISABLE) +typedef union v4sf_union { + v4sf v; + float f[4]; +} v4sf_union; + +#include + +#define assertv4(v,f0,f1,f2,f3) assert(v.f[0] == (f0) && v.f[1] == (f1) && v.f[2] == (f2) && v.f[3] == (f3)) + +/* detect bugs with the vector support macros */ +void validate_pffft_simd(void) { + float f[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 }; + v4sf_union a0, a1, a2, a3, t, u; + memcpy(a0.f, f, 4*sizeof(float)); + memcpy(a1.f, f+4, 4*sizeof(float)); + memcpy(a2.f, f+8, 4*sizeof(float)); + memcpy(a3.f, f+12, 4*sizeof(float)); + + t = a0; u = a1; t.v = VZERO(); + printf("VZERO=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 0, 0, 0, 0); + t.v = VADD(a1.v, a2.v); + printf("VADD(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 12, 14, 16, 18); + t.v = VMUL(a1.v, a2.v); + printf("VMUL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 45, 60, 77); + t.v = VMADD(a1.v, a2.v,a0.v); + printf("VMADD(4:7,8:11,0:3)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 46, 62, 80); + + INTERLEAVE2(a1.v,a2.v,t.v,u.v); + printf("INTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]); + assertv4(t, 4, 8, 5, 9); assertv4(u, 6, 10, 7, 11); + UNINTERLEAVE2(a1.v,a2.v,t.v,u.v); + printf("UNINTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]); + assertv4(t, 4, 6, 8, 10); assertv4(u, 5, 7, 9, 11); + + t.v=LD_PS1(f[15]); + printf("LD_PS1(15)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); + assertv4(t, 15, 15, 15, 15); + t.v = VSWAPHL(a1.v, a2.v); + printf("VSWAPHL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); + assertv4(t, 8, 9, 6, 7); + VTRANSPOSE4(a0.v, a1.v, a2.v, a3.v); + printf("VTRANSPOSE4(0:3,4:7,8:11,12:15)=[%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", + a0.f[0], a0.f[1], a0.f[2], a0.f[3], a1.f[0], a1.f[1], a1.f[2], a1.f[3], + a2.f[0], a2.f[1], a2.f[2], a2.f[3], a3.f[0], a3.f[1], a3.f[2], a3.f[3]); + assertv4(a0, 0, 4, 8, 12); assertv4(a1, 1, 5, 9, 13); assertv4(a2, 2, 6, 10, 14); assertv4(a3, 3, 7, 11, 15); +} +#else +void validate_pffft_simd() {} // allow test_pffft.c to call this function even when simd is not available.. +#endif //!PFFFT_SIMD_DISABLE + +/* SSE and co like 16-bytes aligned pointers */ +#define MALLOC_V4SF_ALIGNMENT 64 // with a 64-byte alignment, we are even aligned on L2 cache lines... +void *pffft_aligned_malloc(size_t nb_bytes) { + void *p, *p0 = malloc(nb_bytes + MALLOC_V4SF_ALIGNMENT); + if (!p0) return (void *) 0; + p = (void *) (((size_t) p0 + MALLOC_V4SF_ALIGNMENT) & (~((size_t) (MALLOC_V4SF_ALIGNMENT-1)))); + *((void **) p - 1) = p0; + return p; +} + +void pffft_aligned_free(void *p) { + if (p) free(*((void **) p - 1)); +} + +int pffft_simd_size() { return SIMD_SZ; } + +/* + passf2 and passb2 has been merged here, fsign = -1 for passf2, +1 for passb2 +*/ +static NEVER_INLINE(void) passf2_ps(int ido, int l1, const v4sf *cc, v4sf *ch, const float *wa1, float fsign) { + int k, i; + int l1ido = l1*ido; + if (ido <= 2) { + for (k=0; k < l1ido; k += ido, ch += ido, cc+= 2*ido) { + ch[0] = VADD(cc[0], cc[ido+0]); + ch[l1ido] = VSUB(cc[0], cc[ido+0]); + ch[1] = VADD(cc[1], cc[ido+1]); + ch[l1ido + 1] = VSUB(cc[1], cc[ido+1]); + } + } else { + for (k=0; k < l1ido; k += ido, ch += ido, cc += 2*ido) { + for (i=0; i 2); + for (k=0; k< l1ido; k += ido, cc+= 3*ido, ch +=ido) { + for (i=0; i 2); + for (k = 0; k < l1; ++k, cc += 5*ido, ch += ido) { + for (i = 0; i < ido-1; i += 2) { + ti5 = VSUB(cc_ref(i , 2), cc_ref(i , 5)); + ti2 = VADD(cc_ref(i , 2), cc_ref(i , 5)); + ti4 = VSUB(cc_ref(i , 3), cc_ref(i , 4)); + ti3 = VADD(cc_ref(i , 3), cc_ref(i , 4)); + tr5 = VSUB(cc_ref(i-1, 2), cc_ref(i-1, 5)); + tr2 = VADD(cc_ref(i-1, 2), cc_ref(i-1, 5)); + tr4 = VSUB(cc_ref(i-1, 3), cc_ref(i-1, 4)); + tr3 = VADD(cc_ref(i-1, 3), cc_ref(i-1, 4)); + ch_ref(i-1, 1) = VADD(cc_ref(i-1, 1), VADD(tr2, tr3)); + ch_ref(i , 1) = VADD(cc_ref(i , 1), VADD(ti2, ti3)); + cr2 = VADD(cc_ref(i-1, 1), VADD(SVMUL(tr11, tr2),SVMUL(tr12, tr3))); + ci2 = VADD(cc_ref(i , 1), VADD(SVMUL(tr11, ti2),SVMUL(tr12, ti3))); + cr3 = VADD(cc_ref(i-1, 1), VADD(SVMUL(tr12, tr2),SVMUL(tr11, tr3))); + ci3 = VADD(cc_ref(i , 1), VADD(SVMUL(tr12, ti2),SVMUL(tr11, ti3))); + cr5 = VADD(SVMUL(ti11, tr5), SVMUL(ti12, tr4)); + ci5 = VADD(SVMUL(ti11, ti5), SVMUL(ti12, ti4)); + cr4 = VSUB(SVMUL(ti12, tr5), SVMUL(ti11, tr4)); + ci4 = VSUB(SVMUL(ti12, ti5), SVMUL(ti11, ti4)); + dr3 = VSUB(cr3, ci4); + dr4 = VADD(cr3, ci4); + di3 = VADD(ci3, cr4); + di4 = VSUB(ci3, cr4); + dr5 = VADD(cr2, ci5); + dr2 = VSUB(cr2, ci5); + di5 = VSUB(ci2, cr5); + di2 = VADD(ci2, cr5); + wr1=wa1[i]; wi1=fsign*wa1[i+1]; wr2=wa2[i]; wi2=fsign*wa2[i+1]; + wr3=wa3[i]; wi3=fsign*wa3[i+1]; wr4=wa4[i]; wi4=fsign*wa4[i+1]; + VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1)); + ch_ref(i - 1, 2) = dr2; + ch_ref(i, 2) = di2; + VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2)); + ch_ref(i - 1, 3) = dr3; + ch_ref(i, 3) = di3; + VCPLXMUL(dr4, di4, LD_PS1(wr3), LD_PS1(wi3)); + ch_ref(i - 1, 4) = dr4; + ch_ref(i, 4) = di4; + VCPLXMUL(dr5, di5, LD_PS1(wr4), LD_PS1(wi4)); + ch_ref(i - 1, 5) = dr5; + ch_ref(i, 5) = di5; + } + } +#undef ch_ref +#undef cc_ref +} + +static NEVER_INLINE(void) radf2_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch, const float *wa1) { + static const float minus_one = -1.f; + int i, k, l1ido = l1*ido; + for (k=0; k < l1ido; k += ido) { + v4sf a = cc[k], b = cc[k + l1ido]; + ch[2*k] = VADD(a, b); + ch[2*(k+ido)-1] = VSUB(a, b); + } + if (ido < 2) return; + if (ido != 2) { + for (k=0; k < l1ido; k += ido) { + for (i=2; i 5) { + wa[i1-1] = wa[i-1]; + wa[i1] = wa[i]; + } + } + l1 = l2; + } +} /* cffti1 */ + + +v4sf *cfftf1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2, const float *wa, const int *ifac, int isign) { + v4sf *in = (v4sf*)input_readonly; + v4sf *out = (in == work2 ? work1 : work2); + int nf = ifac[1], k1; + int l1 = 1; + int iw = 0; + assert(in != out && work1 != work2); + for (k1=2; k1<=nf+1; k1++) { + int ip = ifac[k1]; + int l2 = ip*l1; + int ido = n / l2; + int idot = ido + ido; + switch (ip) { + case 5: { + int ix2 = iw + idot; + int ix3 = ix2 + idot; + int ix4 = ix3 + idot; + passf5_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign); + } break; + case 4: { + int ix2 = iw + idot; + int ix3 = ix2 + idot; + passf4_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], isign); + } break; + case 2: { + passf2_ps(idot, l1, in, out, &wa[iw], isign); + } break; + case 3: { + int ix2 = iw + idot; + passf3_ps(idot, l1, in, out, &wa[iw], &wa[ix2], isign); + } break; + default: + assert(0); + } + l1 = l2; + iw += (ip - 1)*idot; + if (out == work2) { + out = work1; in = work2; + } else { + out = work2; in = work1; + } + } + + return in; /* this is in fact the output .. */ +} + + +struct PFFFT_Setup { + int N; + int Ncvec; // nb of complex simd vectors (N/4 if PFFFT_COMPLEX, N/8 if PFFFT_REAL) + int ifac[15]; + pffft_transform_t transform; + v4sf *data; // allocated room for twiddle coefs + float *e; // points into 'data' , N/4*3 elements + float *twiddle; // points into 'data', N/4 elements +}; + +PFFFT_Setup *pffft_new_setup(int N, pffft_transform_t transform) { + PFFFT_Setup *s = (PFFFT_Setup*)malloc(sizeof(PFFFT_Setup)); + int k, m; + /* unfortunately, the fft size must be a multiple of 16 for complex FFTs + and 32 for real FFTs -- a lot of stuff would need to be rewritten to + handle other cases (or maybe just switch to a scalar fft, I don't know..) */ + if (transform == PFFFT_REAL) { assert((N%(2*SIMD_SZ*SIMD_SZ))==0 && N>0); } + if (transform == PFFFT_COMPLEX) { assert((N%(SIMD_SZ*SIMD_SZ))==0 && N>0); } + //assert((N % 32) == 0); + s->N = N; + s->transform = transform; + /* nb of complex simd vectors */ + s->Ncvec = (transform == PFFFT_REAL ? N/2 : N)/SIMD_SZ; + s->data = (v4sf*)pffft_aligned_malloc(2*s->Ncvec * sizeof(v4sf)); + s->e = (float*)s->data; + s->twiddle = (float*)(s->data + (2*s->Ncvec*(SIMD_SZ-1))/SIMD_SZ); + + if (transform == PFFFT_REAL) { + for (k=0; k < s->Ncvec; ++k) { + int i = k/SIMD_SZ; + int j = k%SIMD_SZ; + for (m=0; m < SIMD_SZ-1; ++m) { + float A = -2*M_PI*(m+1)*k / N; + s->e[(2*(i*3 + m) + 0) * SIMD_SZ + j] = cos(A); + s->e[(2*(i*3 + m) + 1) * SIMD_SZ + j] = sin(A); + } + } + rffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac); + } else { + for (k=0; k < s->Ncvec; ++k) { + int i = k/SIMD_SZ; + int j = k%SIMD_SZ; + for (m=0; m < SIMD_SZ-1; ++m) { + float A = -2*M_PI*(m+1)*k / N; + s->e[(2*(i*3 + m) + 0)*SIMD_SZ + j] = cos(A); + s->e[(2*(i*3 + m) + 1)*SIMD_SZ + j] = sin(A); + } + } + cffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac); + } + + /* check that N is decomposable with allowed prime factors */ + for (k=0, m=1; k < s->ifac[1]; ++k) { m *= s->ifac[2+k]; } + if (m != N/SIMD_SZ) { + pffft_destroy_setup(s); s = 0; + } + + return s; +} + + +void pffft_destroy_setup(PFFFT_Setup *s) { + pffft_aligned_free(s->data); + free(s); +} + +#if !defined(PFFFT_SIMD_DISABLE) + +/* [0 0 1 2 3 4 5 6 7 8] -> [0 8 7 6 5 4 3 2 1] */ +static void reversed_copy(int N, const v4sf *in, int in_stride, v4sf *out) { + v4sf g0, g1; + int k; + INTERLEAVE2(in[0], in[1], g0, g1); in += in_stride; + + *--out = VSWAPHL(g0, g1); // [g0l, g0h], [g1l g1h] -> [g1l, g0h] + for (k=1; k < N; ++k) { + v4sf h0, h1; + INTERLEAVE2(in[0], in[1], h0, h1); in += in_stride; + *--out = VSWAPHL(g1, h0); + *--out = VSWAPHL(h0, h1); + g1 = h1; + } + *--out = VSWAPHL(g1, g0); +} + +static void unreversed_copy(int N, const v4sf *in, v4sf *out, int out_stride) { + v4sf g0, g1, h0, h1; + int k; + g0 = g1 = in[0]; ++in; + for (k=1; k < N; ++k) { + h0 = *in++; h1 = *in++; + g1 = VSWAPHL(g1, h0); + h0 = VSWAPHL(h0, h1); + UNINTERLEAVE2(h0, g1, out[0], out[1]); out += out_stride; + g1 = h1; + } + h0 = *in++; h1 = g0; + g1 = VSWAPHL(g1, h0); + h0 = VSWAPHL(h0, h1); + UNINTERLEAVE2(h0, g1, out[0], out[1]); +} + +void pffft_zreorder(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) { + int k, N = setup->N, Ncvec = setup->Ncvec; + const v4sf *vin = (const v4sf*)in; + v4sf *vout = (v4sf*)out; + assert(in != out); + if (setup->transform == PFFFT_REAL) { + int dk = N/32; + if (direction == PFFFT_FORWARD) { + for (k=0; k < dk; ++k) { + INTERLEAVE2(vin[k*8 + 0], vin[k*8 + 1], vout[2*(0*dk + k) + 0], vout[2*(0*dk + k) + 1]); + INTERLEAVE2(vin[k*8 + 4], vin[k*8 + 5], vout[2*(2*dk + k) + 0], vout[2*(2*dk + k) + 1]); + } + reversed_copy(dk, vin+2, 8, (v4sf*)(out + N/2)); + reversed_copy(dk, vin+6, 8, (v4sf*)(out + N)); + } else { + for (k=0; k < dk; ++k) { + UNINTERLEAVE2(vin[2*(0*dk + k) + 0], vin[2*(0*dk + k) + 1], vout[k*8 + 0], vout[k*8 + 1]); + UNINTERLEAVE2(vin[2*(2*dk + k) + 0], vin[2*(2*dk + k) + 1], vout[k*8 + 4], vout[k*8 + 5]); + } + unreversed_copy(dk, (v4sf*)(in + N/4), (v4sf*)(out + N - 6*SIMD_SZ), -8); + unreversed_copy(dk, (v4sf*)(in + 3*N/4), (v4sf*)(out + N - 2*SIMD_SZ), -8); + } + } else { + if (direction == PFFFT_FORWARD) { + for (k=0; k < Ncvec; ++k) { + int kk = (k/4) + (k%4)*(Ncvec/4); + INTERLEAVE2(vin[k*2], vin[k*2+1], vout[kk*2], vout[kk*2+1]); + } + } else { + for (k=0; k < Ncvec; ++k) { + int kk = (k/4) + (k%4)*(Ncvec/4); + UNINTERLEAVE2(vin[kk*2], vin[kk*2+1], vout[k*2], vout[k*2+1]); + } + } + } +} + +void pffft_cplx_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { + int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks + v4sf r0, i0, r1, i1, r2, i2, r3, i3; + v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; + assert(in != out); + for (k=0; k < dk; ++k) { + r0 = in[8*k+0]; i0 = in[8*k+1]; + r1 = in[8*k+2]; i1 = in[8*k+3]; + r2 = in[8*k+4]; i2 = in[8*k+5]; + r3 = in[8*k+6]; i3 = in[8*k+7]; + VTRANSPOSE4(r0,r1,r2,r3); + VTRANSPOSE4(i0,i1,i2,i3); + VCPLXMUL(r1,i1,e[k*6+0],e[k*6+1]); + VCPLXMUL(r2,i2,e[k*6+2],e[k*6+3]); + VCPLXMUL(r3,i3,e[k*6+4],e[k*6+5]); + + sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2); + sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3); + si0 = VADD(i0,i2); di0 = VSUB(i0, i2); + si1 = VADD(i1,i3); di1 = VSUB(i1, i3); + + /* + transformation for each column is: + + [1 1 1 1 0 0 0 0] [r0] + [1 0 -1 0 0 -1 0 1] [r1] + [1 -1 1 -1 0 0 0 0] [r2] + [1 0 -1 0 0 1 0 -1] [r3] + [0 0 0 0 1 1 1 1] * [i0] + [0 1 0 -1 1 0 -1 0] [i1] + [0 0 0 0 1 -1 1 -1] [i2] + [0 -1 0 1 1 0 -1 0] [i3] + */ + + r0 = VADD(sr0, sr1); i0 = VADD(si0, si1); + r1 = VADD(dr0, di1); i1 = VSUB(di0, dr1); + r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1); + r3 = VSUB(dr0, di1); i3 = VADD(di0, dr1); + + *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1; + *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3; + } +} + +void pffft_cplx_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { + int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks + v4sf r0, i0, r1, i1, r2, i2, r3, i3; + v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; + assert(in != out); + for (k=0; k < dk; ++k) { + r0 = in[8*k+0]; i0 = in[8*k+1]; + r1 = in[8*k+2]; i1 = in[8*k+3]; + r2 = in[8*k+4]; i2 = in[8*k+5]; + r3 = in[8*k+6]; i3 = in[8*k+7]; + + sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2); + sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3); + si0 = VADD(i0,i2); di0 = VSUB(i0, i2); + si1 = VADD(i1,i3); di1 = VSUB(i1, i3); + + r0 = VADD(sr0, sr1); i0 = VADD(si0, si1); + r1 = VSUB(dr0, di1); i1 = VADD(di0, dr1); + r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1); + r3 = VADD(dr0, di1); i3 = VSUB(di0, dr1); + + VCPLXMULCONJ(r1,i1,e[k*6+0],e[k*6+1]); + VCPLXMULCONJ(r2,i2,e[k*6+2],e[k*6+3]); + VCPLXMULCONJ(r3,i3,e[k*6+4],e[k*6+5]); + + VTRANSPOSE4(r0,r1,r2,r3); + VTRANSPOSE4(i0,i1,i2,i3); + + *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1; + *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3; + } +} + + +static ALWAYS_INLINE(void) pffft_real_finalize_4x4(const v4sf *in0, const v4sf *in1, const v4sf *in, + const v4sf *e, v4sf *out) { + v4sf r0, i0, r1, i1, r2, i2, r3, i3; + v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1; + r0 = *in0; i0 = *in1; + r1 = *in++; i1 = *in++; r2 = *in++; i2 = *in++; r3 = *in++; i3 = *in++; + VTRANSPOSE4(r0,r1,r2,r3); + VTRANSPOSE4(i0,i1,i2,i3); + + /* + transformation for each column is: + + [1 1 1 1 0 0 0 0] [r0] + [1 0 -1 0 0 -1 0 1] [r1] + [1 0 -1 0 0 1 0 -1] [r2] + [1 -1 1 -1 0 0 0 0] [r3] + [0 0 0 0 1 1 1 1] * [i0] + [0 -1 0 1 -1 0 1 0] [i1] + [0 -1 0 1 1 0 -1 0] [i2] + [0 0 0 0 -1 1 -1 1] [i3] + */ + + //cerr << "matrix initial, before e , REAL:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n"; + //cerr << "matrix initial, before e, IMAG :\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n"; + + VCPLXMUL(r1,i1,e[0],e[1]); + VCPLXMUL(r2,i2,e[2],e[3]); + VCPLXMUL(r3,i3,e[4],e[5]); + + //cerr << "matrix initial, real part:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n"; + //cerr << "matrix initial, imag part:\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n"; + + sr0 = VADD(r0,r2); dr0 = VSUB(r0,r2); + sr1 = VADD(r1,r3); dr1 = VSUB(r3,r1); + si0 = VADD(i0,i2); di0 = VSUB(i0,i2); + si1 = VADD(i1,i3); di1 = VSUB(i3,i1); + + r0 = VADD(sr0, sr1); + r3 = VSUB(sr0, sr1); + i0 = VADD(si0, si1); + i3 = VSUB(si1, si0); + r1 = VADD(dr0, di1); + r2 = VSUB(dr0, di1); + i1 = VSUB(dr1, di0); + i2 = VADD(dr1, di0); + + *out++ = r0; + *out++ = i0; + *out++ = r1; + *out++ = i1; + *out++ = r2; + *out++ = i2; + *out++ = r3; + *out++ = i3; + +} + +static NEVER_INLINE(void) pffft_real_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { + int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks + /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */ + + v4sf_union cr, ci, *uout = (v4sf_union*)out; + v4sf save = in[7], zero=VZERO(); + float xr0, xi0, xr1, xi1, xr2, xi2, xr3, xi3; + static const float s = M_SQRT2/2; + + cr.v = in[0]; ci.v = in[Ncvec*2-1]; + assert(in != out); + pffft_real_finalize_4x4(&zero, &zero, in+1, e, out); + + /* + [cr0 cr1 cr2 cr3 ci0 ci1 ci2 ci3] + + [Xr(1)] ] [1 1 1 1 0 0 0 0] + [Xr(N/4) ] [0 0 0 0 1 s 0 -s] + [Xr(N/2) ] [1 0 -1 0 0 0 0 0] + [Xr(3N/4)] [0 0 0 0 1 -s 0 s] + [Xi(1) ] [1 -1 1 -1 0 0 0 0] + [Xi(N/4) ] [0 0 0 0 0 -s -1 -s] + [Xi(N/2) ] [0 -1 0 1 0 0 0 0] + [Xi(3N/4)] [0 0 0 0 0 -s 1 -s] + */ + + xr0=(cr.f[0]+cr.f[2]) + (cr.f[1]+cr.f[3]); uout[0].f[0] = xr0; + xi0=(cr.f[0]+cr.f[2]) - (cr.f[1]+cr.f[3]); uout[1].f[0] = xi0; + xr2=(cr.f[0]-cr.f[2]); uout[4].f[0] = xr2; + xi2=(cr.f[3]-cr.f[1]); uout[5].f[0] = xi2; + xr1= ci.f[0] + s*(ci.f[1]-ci.f[3]); uout[2].f[0] = xr1; + xi1=-ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[3].f[0] = xi1; + xr3= ci.f[0] - s*(ci.f[1]-ci.f[3]); uout[6].f[0] = xr3; + xi3= ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[7].f[0] = xi3; + + for (k=1; k < dk; ++k) { + v4sf save_next = in[8*k+7]; + pffft_real_finalize_4x4(&save, &in[8*k+0], in + 8*k+1, + e + k*6, out + k*8); + save = save_next; + } + +} + +static ALWAYS_INLINE(void) pffft_real_preprocess_4x4(const v4sf *in, + const v4sf *e, v4sf *out, int first) { + v4sf r0=in[0], i0=in[1], r1=in[2], i1=in[3], r2=in[4], i2=in[5], r3=in[6], i3=in[7]; + /* + transformation for each column is: + + [1 1 1 1 0 0 0 0] [r0] + [1 0 0 -1 0 -1 -1 0] [r1] + [1 -1 -1 1 0 0 0 0] [r2] + [1 0 0 -1 0 1 1 0] [r3] + [0 0 0 0 1 -1 1 -1] * [i0] + [0 -1 1 0 1 0 0 1] [i1] + [0 0 0 0 1 1 -1 -1] [i2] + [0 1 -1 0 1 0 0 1] [i3] + */ + + v4sf sr0 = VADD(r0,r3), dr0 = VSUB(r0,r3); + v4sf sr1 = VADD(r1,r2), dr1 = VSUB(r1,r2); + v4sf si0 = VADD(i0,i3), di0 = VSUB(i0,i3); + v4sf si1 = VADD(i1,i2), di1 = VSUB(i1,i2); + + r0 = VADD(sr0, sr1); + r2 = VSUB(sr0, sr1); + r1 = VSUB(dr0, si1); + r3 = VADD(dr0, si1); + i0 = VSUB(di0, di1); + i2 = VADD(di0, di1); + i1 = VSUB(si0, dr1); + i3 = VADD(si0, dr1); + + VCPLXMULCONJ(r1,i1,e[0],e[1]); + VCPLXMULCONJ(r2,i2,e[2],e[3]); + VCPLXMULCONJ(r3,i3,e[4],e[5]); + + VTRANSPOSE4(r0,r1,r2,r3); + VTRANSPOSE4(i0,i1,i2,i3); + + if (!first) { + *out++ = r0; + *out++ = i0; + } + *out++ = r1; + *out++ = i1; + *out++ = r2; + *out++ = i2; + *out++ = r3; + *out++ = i3; +} + +static NEVER_INLINE(void) pffft_real_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) { + int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks + /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */ + + v4sf_union Xr, Xi, *uout = (v4sf_union*)out; + float cr0, ci0, cr1, ci1, cr2, ci2, cr3, ci3; + static const float s = M_SQRT2; + assert(in != out); + for (k=0; k < 4; ++k) { + Xr.f[k] = ((float*)in)[8*k]; + Xi.f[k] = ((float*)in)[8*k+4]; + } + + pffft_real_preprocess_4x4(in, e, out+1, 1); // will write only 6 values + + /* + [Xr0 Xr1 Xr2 Xr3 Xi0 Xi1 Xi2 Xi3] + + [cr0] [1 0 2 0 1 0 0 0] + [cr1] [1 0 0 0 -1 0 -2 0] + [cr2] [1 0 -2 0 1 0 0 0] + [cr3] [1 0 0 0 -1 0 2 0] + [ci0] [0 2 0 2 0 0 0 0] + [ci1] [0 s 0 -s 0 -s 0 -s] + [ci2] [0 0 0 0 0 -2 0 2] + [ci3] [0 -s 0 s 0 -s 0 -s] + */ + for (k=1; k < dk; ++k) { + pffft_real_preprocess_4x4(in+8*k, e + k*6, out-1+k*8, 0); + } + + cr0=(Xr.f[0]+Xi.f[0]) + 2*Xr.f[2]; uout[0].f[0] = cr0; + cr1=(Xr.f[0]-Xi.f[0]) - 2*Xi.f[2]; uout[0].f[1] = cr1; + cr2=(Xr.f[0]+Xi.f[0]) - 2*Xr.f[2]; uout[0].f[2] = cr2; + cr3=(Xr.f[0]-Xi.f[0]) + 2*Xi.f[2]; uout[0].f[3] = cr3; + ci0= 2*(Xr.f[1]+Xr.f[3]); uout[2*Ncvec-1].f[0] = ci0; + ci1= s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[1] = ci1; + ci2= 2*(Xi.f[3]-Xi.f[1]); uout[2*Ncvec-1].f[2] = ci2; + ci3=-s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[3] = ci3; +} + + +void pffft_transform_internal(PFFFT_Setup *setup, const float *finput, float *foutput, v4sf *scratch, + pffft_direction_t direction, int ordered) { + int k, Ncvec = setup->Ncvec; + int nf_odd = (setup->ifac[1] & 1); + + // temporary buffer is allocated on the stack if the scratch pointer is NULL + int stack_allocate = (scratch == 0 ? Ncvec*2 : 1); + VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate); + + const v4sf *vinput = (const v4sf*)finput; + v4sf *voutput = (v4sf*)foutput; + v4sf *buff[2] = { voutput, scratch ? scratch : scratch_on_stack }; + int ib = (nf_odd ^ ordered ? 1 : 0); + + assert(VALIGNED(finput) && VALIGNED(foutput)); + + //assert(finput != foutput); + if (direction == PFFFT_FORWARD) { + ib = !ib; + if (setup->transform == PFFFT_REAL) { + ib = (rfftf1_ps(Ncvec*2, vinput, buff[ib], buff[!ib], + setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); + pffft_real_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e); + } else { + v4sf *tmp = buff[ib]; + for (k=0; k < Ncvec; ++k) { + UNINTERLEAVE2(vinput[k*2], vinput[k*2+1], tmp[k*2], tmp[k*2+1]); + } + ib = (cfftf1_ps(Ncvec, buff[ib], buff[!ib], buff[ib], + setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1); + pffft_cplx_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e); + } + if (ordered) { + pffft_zreorder(setup, (float*)buff[!ib], (float*)buff[ib], PFFFT_FORWARD); + } else ib = !ib; + } else { + if (vinput == buff[ib]) { + ib = !ib; // may happen when finput == foutput + } + if (ordered) { + pffft_zreorder(setup, (float*)vinput, (float*)buff[ib], PFFFT_BACKWARD); + vinput = buff[ib]; ib = !ib; + } + if (setup->transform == PFFFT_REAL) { + pffft_real_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e); + ib = (rfftb1_ps(Ncvec*2, buff[ib], buff[0], buff[1], + setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); + } else { + pffft_cplx_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e); + ib = (cfftf1_ps(Ncvec, buff[ib], buff[0], buff[1], + setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1); + for (k=0; k < Ncvec; ++k) { + INTERLEAVE2(buff[ib][k*2], buff[ib][k*2+1], buff[ib][k*2], buff[ib][k*2+1]); + } + } + } + + if (buff[ib] != voutput) { + /* extra copy required -- this situation should only happen when finput == foutput */ + assert(finput==foutput); + for (k=0; k < Ncvec; ++k) { + v4sf a = buff[ib][2*k], b = buff[ib][2*k+1]; + voutput[2*k] = a; voutput[2*k+1] = b; + } + ib = !ib; + } + assert(buff[ib] == voutput); +} + +void pffft_zconvolve_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab, float scaling) { + int Ncvec = s->Ncvec; + const v4sf * RESTRICT va = (const v4sf*)a; + const v4sf * RESTRICT vb = (const v4sf*)b; + v4sf * RESTRICT vab = (v4sf*)ab; + +#ifdef __arm__ + __builtin_prefetch(va); + __builtin_prefetch(vb); + __builtin_prefetch(vab); + __builtin_prefetch(va+2); + __builtin_prefetch(vb+2); + __builtin_prefetch(vab+2); + __builtin_prefetch(va+4); + __builtin_prefetch(vb+4); + __builtin_prefetch(vab+4); + __builtin_prefetch(va+6); + __builtin_prefetch(vb+6); + __builtin_prefetch(vab+6); +# ifndef __clang__ +# define ZCONVOLVE_USING_INLINE_NEON_ASM +# endif +#endif + + float ar, ai, br, bi, abr, abi; +#ifndef ZCONVOLVE_USING_INLINE_ASM + v4sf vscal = LD_PS1(scaling); + int i; +#endif + + assert(VALIGNED(a) && VALIGNED(b) && VALIGNED(ab)); + ar = ((v4sf_union*)va)[0].f[0]; + ai = ((v4sf_union*)va)[1].f[0]; + br = ((v4sf_union*)vb)[0].f[0]; + bi = ((v4sf_union*)vb)[1].f[0]; + abr = ((v4sf_union*)vab)[0].f[0]; + abi = ((v4sf_union*)vab)[1].f[0]; + +#ifdef ZCONVOLVE_USING_INLINE_ASM // inline asm version, unfortunately miscompiled by clang 3.2, at least on ubuntu.. so this will be restricted to gcc + const float *a_ = a, *b_ = b; float *ab_ = ab; + int N = Ncvec; + asm volatile("mov r8, %2 \n" + "vdup.f32 q15, %4 \n" + "1: \n" + "pld [%0,#64] \n" + "pld [%1,#64] \n" + "pld [%2,#64] \n" + "pld [%0,#96] \n" + "pld [%1,#96] \n" + "pld [%2,#96] \n" + "vld1.f32 {q0,q1}, [%0,:128]! \n" + "vld1.f32 {q4,q5}, [%1,:128]! \n" + "vld1.f32 {q2,q3}, [%0,:128]! \n" + "vld1.f32 {q6,q7}, [%1,:128]! \n" + "vld1.f32 {q8,q9}, [r8,:128]! \n" + + "vmul.f32 q10, q0, q4 \n" + "vmul.f32 q11, q0, q5 \n" + "vmul.f32 q12, q2, q6 \n" + "vmul.f32 q13, q2, q7 \n" + "vmls.f32 q10, q1, q5 \n" + "vmla.f32 q11, q1, q4 \n" + "vld1.f32 {q0,q1}, [r8,:128]! \n" + "vmls.f32 q12, q3, q7 \n" + "vmla.f32 q13, q3, q6 \n" + "vmla.f32 q8, q10, q15 \n" + "vmla.f32 q9, q11, q15 \n" + "vmla.f32 q0, q12, q15 \n" + "vmla.f32 q1, q13, q15 \n" + "vst1.f32 {q8,q9},[%2,:128]! \n" + "vst1.f32 {q0,q1},[%2,:128]! \n" + "subs %3, #2 \n" + "bne 1b \n" + : "+r"(a_), "+r"(b_), "+r"(ab_), "+r"(N) : "r"(scaling) : "r8", "q0","q1","q2","q3","q4","q5","q6","q7","q8","q9", "q10","q11","q12","q13","q15","memory"); +#else // default routine, works fine for non-arm cpus with current compilers + for (i=0; i < Ncvec; i += 2) { + v4sf ar, ai, br, bi; + ar = va[2*i+0]; ai = va[2*i+1]; + br = vb[2*i+0]; bi = vb[2*i+1]; + VCPLXMUL(ar, ai, br, bi); + vab[2*i+0] = VMADD(ar, vscal, vab[2*i+0]); + vab[2*i+1] = VMADD(ai, vscal, vab[2*i+1]); + ar = va[2*i+2]; ai = va[2*i+3]; + br = vb[2*i+2]; bi = vb[2*i+3]; + VCPLXMUL(ar, ai, br, bi); + vab[2*i+2] = VMADD(ar, vscal, vab[2*i+2]); + vab[2*i+3] = VMADD(ai, vscal, vab[2*i+3]); + } +#endif + if (s->transform == PFFFT_REAL) { + ((v4sf_union*)vab)[0].f[0] = abr + ar*br*scaling; + ((v4sf_union*)vab)[1].f[0] = abi + ai*bi*scaling; + } +} + + +#else // defined(PFFFT_SIMD_DISABLE) + +// standard routine using scalar floats, without SIMD stuff. + +#define pffft_zreorder_nosimd pffft_zreorder +void pffft_zreorder_nosimd(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) { + int k, N = setup->N; + if (setup->transform == PFFFT_COMPLEX) { + for (k=0; k < 2*N; ++k) out[k] = in[k]; + return; + } + else if (direction == PFFFT_FORWARD) { + float x_N = in[N-1]; + for (k=N-1; k > 1; --k) out[k] = in[k-1]; + out[0] = in[0]; + out[1] = x_N; + } else { + float x_N = in[1]; + for (k=1; k < N-1; ++k) out[k] = in[k+1]; + out[0] = in[0]; + out[N-1] = x_N; + } +} + +#define pffft_transform_internal_nosimd pffft_transform_internal +void pffft_transform_internal_nosimd(PFFFT_Setup *setup, const float *input, float *output, float *scratch, + pffft_direction_t direction, int ordered) { + int Ncvec = setup->Ncvec; + int nf_odd = (setup->ifac[1] & 1); + + // temporary buffer is allocated on the stack if the scratch pointer is NULL + int stack_allocate = (scratch == 0 ? Ncvec*2 : 1); + VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate); + float *buff[2]; + int ib; + if (scratch == 0) scratch = scratch_on_stack; + buff[0] = output; buff[1] = scratch; + + if (setup->transform == PFFFT_COMPLEX) ordered = 0; // it is always ordered. + ib = (nf_odd ^ ordered ? 1 : 0); + + if (direction == PFFFT_FORWARD) { + if (setup->transform == PFFFT_REAL) { + ib = (rfftf1_ps(Ncvec*2, input, buff[ib], buff[!ib], + setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); + } else { + ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib], + setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1); + } + if (ordered) { + pffft_zreorder(setup, buff[ib], buff[!ib], PFFFT_FORWARD); ib = !ib; + } + } else { + if (input == buff[ib]) { + ib = !ib; // may happen when finput == foutput + } + if (ordered) { + pffft_zreorder(setup, input, buff[!ib], PFFFT_BACKWARD); + input = buff[!ib]; + } + if (setup->transform == PFFFT_REAL) { + ib = (rfftb1_ps(Ncvec*2, input, buff[ib], buff[!ib], + setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1); + } else { + ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib], + setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1); + } + } + if (buff[ib] != output) { + int k; + // extra copy required -- this situation should happens only when finput == foutput + assert(input==output); + for (k=0; k < Ncvec; ++k) { + float a = buff[ib][2*k], b = buff[ib][2*k+1]; + output[2*k] = a; output[2*k+1] = b; + } + ib = !ib; + } + assert(buff[ib] == output); +} + +#define pffft_zconvolve_accumulate_nosimd pffft_zconvolve_accumulate +void pffft_zconvolve_accumulate_nosimd(PFFFT_Setup *s, const float *a, const float *b, + float *ab, float scaling) { + int i, Ncvec = s->Ncvec; + + if (s->transform == PFFFT_REAL) { + // take care of the fftpack ordering + ab[0] += a[0]*b[0]*scaling; + ab[2*Ncvec-1] += a[2*Ncvec-1]*b[2*Ncvec-1]*scaling; + ++ab; ++a; ++b; --Ncvec; + } + for (i=0; i < Ncvec; ++i) { + float ar, ai, br, bi; + ar = a[2*i+0]; ai = a[2*i+1]; + br = b[2*i+0]; bi = b[2*i+1]; + VCPLXMUL(ar, ai, br, bi); + ab[2*i+0] += ar*scaling; + ab[2*i+1] += ai*scaling; + } +} + +#endif // defined(PFFFT_SIMD_DISABLE) + +void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) { + pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 0); +} + +void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) { + pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 1); +} diff --git a/hvcc/generators/ir2c/static/pffft.h b/hvcc/generators/ir2c/static/pffft.h new file mode 100644 index 00000000..5db3d113 --- /dev/null +++ b/hvcc/generators/ir2c/static/pffft.h @@ -0,0 +1,177 @@ +/* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com ) + + Based on original fortran 77 code from FFTPACKv4 from NETLIB, + authored by Dr Paul Swarztrauber of NCAR, in 1985. + + As confirmed by the NCAR fftpack software curators, the following + FFTPACKv5 license applies to FFTPACKv4 sources. My changes are + released under the same terms. + + FFTPACK license: + + http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html + + Copyright (c) 2004 the University Corporation for Atmospheric + Research ("UCAR"). All rights reserved. Developed by NCAR's + Computational and Information Systems Laboratory, UCAR, + www.cisl.ucar.edu. + + Redistribution and use of the Software in source and binary forms, + with or without modification, is permitted provided that the + following conditions are met: + + - Neither the names of NCAR's Computational and Information Systems + Laboratory, the University Corporation for Atmospheric Research, + nor the names of its sponsors or contributors may be used to + endorse or promote products derived from this Software without + specific prior written permission. + + - Redistributions of source code must retain the above copyright + notices, this list of conditions, and the disclaimer below. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions, and the disclaimer below in the + documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN + ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE + SOFTWARE. +*/ + +/* + PFFFT : a Pretty Fast FFT. + + This is basically an adaptation of the single precision fftpack + (v4) as found on netlib taking advantage of SIMD instruction found + on cpus such as intel x86 (SSE1), powerpc (Altivec), and arm (NEON). + + For architectures where no SIMD instruction is available, the code + falls back to a scalar version. + + Restrictions: + + - 1D transforms only, with 32-bit single precision. + + - supports only transforms for inputs of length N of the form + N=(2^a)*(3^b)*(5^c), a >= 5, b >=0, c >= 0 (32, 48, 64, 96, 128, + 144, 160, etc are all acceptable lengths). Performance is best for + 128<=N<=8192. + + - all (float*) pointers in the functions below are expected to + have an "simd-compatible" alignment, that is 16 bytes on x86 and + powerpc CPUs. + + You can allocate such buffers with the functions + pffft_aligned_malloc / pffft_aligned_free (or with stuff like + posix_memalign..) + +*/ + +#ifndef PFFFT_H +#define PFFFT_H + +#include // for size_t + +#ifdef __cplusplus +extern "C" { +#endif + + /* opaque struct holding internal stuff (precomputed twiddle factors) + this struct can be shared by many threads as it contains only + read-only data. + */ + typedef struct PFFFT_Setup PFFFT_Setup; + + /* direction of the transform */ + typedef enum { PFFFT_FORWARD, PFFFT_BACKWARD } pffft_direction_t; + + /* type of transform */ + typedef enum { PFFFT_REAL, PFFFT_COMPLEX } pffft_transform_t; + + /* + prepare for performing transforms of size N -- the returned + PFFFT_Setup structure is read-only so it can safely be shared by + multiple concurrent threads. + */ + PFFFT_Setup *pffft_new_setup(int N, pffft_transform_t transform); + void pffft_destroy_setup(PFFFT_Setup *); + /* + Perform a Fourier transform , The z-domain data is stored in the + most efficient order for transforming it back, or using it for + convolution. If you need to have its content sorted in the + "usual" way, that is as an array of interleaved complex numbers, + either use pffft_transform_ordered , or call pffft_zreorder after + the forward fft, and before the backward fft. + + Transforms are not scaled: PFFFT_BACKWARD(PFFFT_FORWARD(x)) = N*x. + Typically you will want to scale the backward transform by 1/N. + + The 'work' pointer should point to an area of N (2*N for complex + fft) floats, properly aligned. If 'work' is NULL, then stack will + be used instead (this is probably the best strategy for small + FFTs, say for N < 16384). + + input and output may alias. + */ + void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction); + + /* + Similar to pffft_transform, but makes sure that the output is + ordered as expected (interleaved complex numbers). This is + similar to calling pffft_transform and then pffft_zreorder. + + input and output may alias. + */ + void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction); + + /* + call pffft_zreorder(.., PFFFT_FORWARD) after pffft_transform(..., + PFFFT_FORWARD) if you want to have the frequency components in + the correct "canonical" order, as interleaved complex numbers. + + (for real transforms, both 0-frequency and half frequency + components, which are real, are assembled in the first entry as + F(0)+i*F(n/2+1). Note that the original fftpack did place + F(n/2+1) at the end of the arrays). + + input and output should not alias. + */ + void pffft_zreorder(PFFFT_Setup *setup, const float *input, float *output, pffft_direction_t direction); + + /* + Perform a multiplication of the frequency components of dft_a and + dft_b and accumulate them into dft_ab. The arrays should have + been obtained with pffft_transform(.., PFFFT_FORWARD) and should + *not* have been reordered with pffft_zreorder (otherwise just + perform the operation yourself as the dft coefs are stored as + interleaved complex numbers). + + the operation performed is: dft_ab += (dft_a * fdt_b)*scaling + + The dft_a, dft_b and dft_ab pointers may alias. + */ + void pffft_zconvolve_accumulate(PFFFT_Setup *setup, const float *dft_a, const float *dft_b, float *dft_ab, float scaling); + + /* + the float buffers must have the correct alignment (16-byte boundary + on intel and powerpc). This function may be used to obtain such + correctly aligned buffers. + */ + void *pffft_aligned_malloc(size_t nb_bytes); + void pffft_aligned_free(void *); + + /* return 4 or 1 wether support SSE/Altivec instructions was enable when building pffft.c */ + int pffft_simd_size(void); + +#ifdef __cplusplus +} +#endif + +#endif // PFFFT_H diff --git a/hvcc/generators/ir2c/templates/Heavy_NAME.cpp b/hvcc/generators/ir2c/templates/Heavy_NAME.cpp index a9e0a33c..1127e1ac 100644 --- a/hvcc/generators/ir2c/templates/Heavy_NAME.cpp +++ b/hvcc/generators/ir2c/templates/Heavy_NAME.cpp @@ -174,6 +174,8 @@ int Heavy_{{name}}::process(float **inputBuffers, float **outputBuffers, int n) {%- if signal.numInputBuffers > 0 or signal.numOutputBuffers > 0 %} const int n4 = n & ~HV_N_SIMD_MASK; // ensure that the block size is a multiple of HV_N_SIMD + sendFloatToReceiver(0xB5B01859, static_cast(n4)); // send to __hv_blocksize + // temporary signal vars {%- if signal.numTemporaryBuffers.float > 0 %} hv_bufferf_t {% for i in range(signal.numTemporaryBuffers.float) %}Bf{{i}}{% if not loop.last %}, {%endif%}{% endfor %}; diff --git a/hvcc/interpreters/pd2hv/libs/pd/rfft~.pd b/hvcc/interpreters/pd2hv/libs/pd/rfft~.pd new file mode 100644 index 00000000..2079e285 --- /dev/null +++ b/hvcc/interpreters/pd2hv/libs/pd/rfft~.pd @@ -0,0 +1,30 @@ +#N canvas 796 489 436 234 12; +#X obj 25 15 inlet~; +#N canvas 0 22 450 300 @hv_obj 0; +#X obj 146 77 inlet; +#X obj 147 120 outlet; +#X restore 211 129 pd @hv_obj system; +#X text 80 22 measured after initialisation; +#X obj 25 184 outlet~; +#X obj 211 48 loadbang; +#X obj 65 111 r __hv_blocksize; +#X obj 211 185 outlet~; +#X msg 211 104 table \$1 size; +#X obj 71 62 table rfft_\$0; +#X obj 211 76 symbol rfft_\$0; +#N canvas 0 22 450 300 @hv_obj 0; +#X obj 55 136 outlet~; +#X obj 55 75 inlet~; +#X obj 190 74 inlet; +#X obj 122 78 inlet; +#X obj 167 137 outlet~; +#X restore 25 155 pd @hv_obj __rfft~f rfft_\$0; +#X text 80 11 NOTE(dreamer): ensure that the table size is; +#X connect 0 0 10 0; +#X connect 1 0 10 2; +#X connect 4 0 9 0; +#X connect 5 0 10 1; +#X connect 7 0 1 0; +#X connect 9 0 7 0; +#X connect 10 0 3 0; +#X connect 10 1 6 0; diff --git a/hvcc/interpreters/pd2hv/libs/pd/rifft~.pd b/hvcc/interpreters/pd2hv/libs/pd/rifft~.pd new file mode 100644 index 00000000..437506f8 --- /dev/null +++ b/hvcc/interpreters/pd2hv/libs/pd/rifft~.pd @@ -0,0 +1,30 @@ +#N canvas 1038 308 486 278 12; +#X obj 24 59 inlet~; +#X text 22 24 measured after initialisation; +#X text 22 14 NOTE(mhroth): ensure that the table size is; +#X obj 24 227 outlet~; +#X obj 157 121 r __hv_blocksize; +#X obj 91 59 inlet~; +#N canvas 0 22 450 300 @hv_obj 0; +#X obj 55 136 outlet~; +#X obj 55 75 inlet~; +#X obj 247 75 inlet; +#X obj 179 75 inlet; +#X obj 117 75 inlet~; +#X restore 24 197 pd @hv_obj __rifft~f rifft_\$0; +#N canvas 0 22 450 300 @hv_obj 0; +#X obj 146 77 inlet; +#X obj 147 120 outlet; +#X restore 287 144 pd @hv_obj system; +#X obj 287 63 loadbang; +#X msg 287 119 table \$1 size; +#X obj 150 77 table rifft_\$0; +#X obj 287 91 symbol rifft_\$0; +#X connect 0 0 6 0; +#X connect 4 0 6 2; +#X connect 5 0 6 1; +#X connect 6 0 3 0; +#X connect 7 0 6 3; +#X connect 8 0 11 0; +#X connect 9 0 7 0; +#X connect 11 0 9 0;